

Информатика, вычислительная техника и управление

 35

UDC 004.054

Doi: 10.31772/2587-6066-2019-20-1-35-39

For citation: Yakimov I. A., Kuznetsov A. S., Skripachev A. M. [Optimizing the readability of tests generated by

symbolic execution]. Siberian Journal of Science and Technology. 2019, Vol. 20, No. 1, P. 35–39. Doi: 10.31772/2587-

6066-2019-20-1-35-39

Для цитирования: Якимов И. А., Кузнецов А. С., Скрипачев А. М. Оптимизация читаемости порождаемых

при символьных вычислениях тестов // Сибирский журнал науки и технологий. 2019. Т. 20, № 1. С. 35–39.

Doi: 10.31772/2587-6066-2019-20-1-35-39

OPTIMIZING THE READABILITY OF TESTS GENERATED BY SYMBOLIC EXECUTION

I. A. Yakimov*, A. S. Kuznetsov, A. M. Skripachev

Siberian Federal University

79/10, Svobodnyy Av., Krasnoyarsk, 660041, Russian Federation

*E-mail: ivan.yakimov.research@yandex.ru

Taking up about half of the development time, testing remains the most common method of software quality control

and its disadvantage can lead to financial losses. With a systematic approach, the test suite is considered to be complete

if it provides a certain amount of code coverage. At the moment there are a large number of systematic test generators

aimed at finding standard errors. Such tools generate a huge number of difficult-to-read tests that require human veri-

fication which is very expensive. The method presented in this paper allows improving the readability of tests that are

automatically generated using symbolic execution, providing a qualitative reduction in the cost of verification. Experi-

mental studies of the test generator, including this method as the final phase of the work, were conducted on 12 string

functions from the Linux repository. The assessment of the readability of the lines contained in the optimized tests is

comparable to the case of using words of a natural language, which has a positive effect on the process of verification

of test results by humans.

Keywords: dynamic symbolic execution, natural language model, the problem of tests verification by humans.

ОПТИМИЗАЦИЯ ЧИТАЕМОСТИ ПОРОЖДАЕМЫХ

ПРИ СИМВОЛЬНЫХ ВЫЧИСЛЕНИЯХ ТЕСТОВ

И. А. Якимов*, А. С. Кузнецов, А. М. Скрипачев

Сибирский федеральный университет

Российская Федерация, 660041, г. Красноярск, просп. Свободный, 79/10

*E-mail: ivan.yakimov.research@yandex.ru

Занимая около половины времени разработки, тестирование остается наиболее распространенным мето-

дом контроля качества программного обеспечения (ПО). Его недостаток может приводить к финансовым

потерям. При систематическом подходе тестовый набор считается полным, если он обеспечивает опреде-

ленное покрытие кода. На данный момент существует большое количество систематических генераторов

тестов, направленных на поиск стандартных ошибок. Подобные инструменты порождают огромное количе-

ство трудночитаемых тестов, обладающих высокой ценой проверки человеком. Представленный в данной

работе метод позволяет улучшить читаемость тестов, автоматически сгенерированных при помощи сим-

вольных вычислений, и обеспечивает качественное снижение данной цены. Экспериментальные исследования

генератора тестов, включающего данный метод в качестве заключительной фазы работы, были проведены

на 12-строковых функциях из репозитория Linux. Оценка степени читаемости строк, содержащихся в опти-

мизированных тестах, сопоставима со случаем использования слов натурального языка, что положительно

сказывается на процессе верификации результатов тестирования человеком.

Ключевые слова: динамические символьные вычисления, модель естественного языка, проблема проверки

тестов человеком.

Introduction. On the one hand, modern software

systems tend to be highly complicated and expensive in

development. On the other hand, software development

itself is a time-consuming and error-prone process. It is

very important to find serious errors before they cause

any damage. Thus, in order to help developers in finding

errors some bug searching methods have been developed.

Software testing is one of the most popular bug searching

methods. However, it is a time-consuming task that takes

about a half of the development time. In order to reduce

Сибирский журнал науки и технологий. Том 20, № 1

 36

the time expenditures associated with testing several test

automation techniques have been proposed.

One of the most popular approaches to the test auto-

mation is a code-based test generation [1; 2]. Some sys-

tematic code-based test generation techniques have been

developed for the last few decades. Two of them are:

Search-Based Software Testing (SBST) and Dynamic

Symbolic Execution (DSE). Any systematic test genera-

tion method relies on some sort of a code coverage

metric. Only test data with appropriate code coverage is

considered to be adequate. In order to provide required

code coverage a coverage criterion needs to be defined.

The popular coverage criteria are: instruction-coverage

and branch-coverage. Both DSE and SBST are aimed to

provide systematic code coverage for a target program.

In order to generate test cases with SBST-based tool

the goal of testing needs to be defined in terms of fitness

(objective) function [3]. It is convenient to use a branch

coverage criterion as a goal of testing when using SBST.

SBST-based tools launch target programs on some ran-

dom input data. The program alternates the input data in

an iterative way optimizing the value of the fitness func-

tion. Only when the fitness function is optimized the goal

of testing is achieved. Final input data represents the de-

sired test case.

DSE-based [4–6] tools maintain symbolic state in ad-

dition to the concrete (usual) state of the target program.

During the execution of a target program it collects con-

straints on the program variables. This constraint system

is called a path constraint or a PC. A PC represents

an equivalence class of input data that leads the target

program through the corresponding path. The execution

of the target program forks on each decision point

(for example conditional operator if-else) providing

branch coverage. When the execution of the target pro-

gram is completed, appropriate test input data can be ob-

tained by solving the PC.

In general, code-based test generators tend to produce

lots of almost unreadable test data. It is hard to verify

such unreadable test data manually. This problem is

called the Human Oracle Cost Problem [7]. Afshan et al.

[8] proposed a method of improving readability of test

cases produced by SBST-based tools. They used a charac-

ter-level bigram model of a natural language to drive the

search process toward more readable results. In order to

do this, they added readability estimation of the target test

data into the fitness function.

A character-level bigram model of a natural language

is defined in terms of ordered pairs of characters, i. e.

bigrams. Let (ci, ci–1) be a bigram, then P (ci | ci–1) is a

probability of co-occurrence of ci and ci–1, in the language

corpus, where the language corpus is a large collection of

written texts. Let also ()1

n
P c be a probability of belong-

ing the whole string
1

nc of length n to the language corpus.

The bigram model estimates probability ()1

n
P c as shown

in the equation below:

() ()1 1

1

ˆ
n

n

i i

i=

P c P c | c −≈∏

In order to compare strings of different length P̂ has

to be normalized always. Readability estimation N is de-

fined as a normalized value of P̂ as shown in equation

below:

() ()
1/

1 1
ˆ

n
n nN c = P c .

This work proposes a new method for improving

readability of test data generated by DSE-based tools. In

contrast to the work of Afshan et al. [8] we do not rely on

any kind of fitness function. The improvement process is

performed by changing a PC after the execution of the

target progrem. To the best of our knowledge this is the

first readability optimization method in context of the

DSE.

Methods. The workflow of the proposed system in-

cludes two main stages. At the first stage, the system pro-

duces a path constraint PC, which is an abstract represen-

tation of a program state. At the second stage, the system

optimizes readability of the PC constraining it with the

help of a character-level bigram model. As mentioned

above, every PC represents an equivalence class of some

test inputs and is associated with a single program path.

Some of those inputs might be more “readable” than the

others. Informally speaking, the goal of the algorithm is to

find “the most readable” input within the set of all possi-

ble inputs corresponding to the given PC.

Example. Let us first provide an example of the read-

ability optimization process. Let us say we have a strlen

as a target function. It takes a null-terminated string

S = {‘a1’, a2, a3, ‘\0’} as an input, where eash ai is a sym-

bolic value and ‘\0’ is a “concrete” terminator. The initial

state of the program is represented in figure, a. The

optimizer concretizes S transforming it into the string

“yes\0”. Firstly, the algorithm tries to make each ai print-

able as shown in figure, b. Secondly, it attempts to make

all of the a-s alphabetic as shown in figure, c. Finally,

it attempts to rearrange as in an appropriate order using

the bigram model. Results are shown in figure, d.

Memory graph. The optimizer operates on a memory

graph M [9] which is an internal representation of the test

data. Each node of M belongs to one of the following

types: scalar (concrete or symbolic) value (a); concrete

pointer to another node (b); array of nodes of a concrete

length (c). Actually, every string S within M is repre-

sented as an array of scalar nodes.

Formal definition. A pseudocode of the algorithm is

represented in Algorithm 1. The goal of the optimizer is

to maximize the value of readability estimation S (N) for

every string S within M. Thus, the optimizer considers

only strings within M. It never violates the current PC and

never changes concrete values that PC contains. The

optimizer is only allowed to put constraints on symbolic

values when it is safe. At the first step, it tries to make

each symbolic value within S to be “alphabetic” or at least

“printable”. After that, it uses a bigram model in order to

make the whole string being more like a “real word”.

During this process, every single string S within M is

transformed in the following way.

Информатика, вычислительная техника и управление

 37

a b c d

An example of a readability optimization algorithm work

Пример работы алгоритма по оптимизации читаемости

1. Narrowing. At this stage the optimizer tries to in-

crease the readability of every symbolic character ai

within S:

– Firstly, it tries to make each ai printable constraining

it with (’’ ≤ ai ≤ ’
~
’);

– If it is successful, it then tries to make it alphabetical

applying additional constraint (’A’ ≤ ai ≤ ’Z’ ∨ ’a’ ≤

≤ ai ≤ ’z’).

2. Concretization. At the beginning, the optimizer fo-

cuses on the first value a1 of the current string S. If it is

possible, it tries to “assign” a random alphabetic value to

the a1 constraining it with (a1 = some random alphabetic

character). At the next step, the optimizer traverses

through all the bigrams (ai, ai+1), where i = 1…n − 1,

within string S. Let (ai , ai+1) be the current bigram, then:

– Firstly, the optimizer takes a concrete value of ai.

Note that if ai is symbolic the optimizer calls the SMT-

solver for its value.

– Secondly, if ai+1 is a symbolic value the optimizer

tries to obtain the “most probable” value val of ai+1 in

terms of the bigram model. If it is successful, it than at-

tempts to apply the (ai+1 = val) constraint to ai+1.

Algorithm 1 Improving readability

 1: procedure Narrowing (Memory graph M)

 2: for all s ∈ M do

 3: if s is a string of length n then

 4: for all i ∈ {1, 2,..., n} do

 5: printable → Probe ((’ ’ ≤ ai ≤ ’
~
’))

 6: if printable = true then

 7: Probe (((’A’ ≤ ai ≤ ’Z’) ∨ (’a’ ≤ ai ≤ ’z’)))

 8: end if

 9: end for

10: end if

11: end for

12: end procedure

13: procedure Concretization (Memory graph M)

14: for all s ∈ M do

15: if s is a string of length n then

16: if a1 is symbolic then

17: alpha ← random alphabetic character

18: Probe ((a1 = alpha))

19: end if

20: for all i ∈ {1, 2,..., n − 1} do

21: fst ← Value (ai)

22: if fst is alphabetic ∧ ai+1 is symbolic then

23: snd ← Next (fst)

24: Probe ((ai+1 = snd))

25: end if

26: end for

27: end if

28: end for

29: end procedure

30: function Value (Scalar node a of memory graph M)

31: if a contains concrete value then

32: return value of a

33: else if a contains symbolic value then

34: Ask external SMT-solver for value of a

35: return value returned by SMT-solver

36: end if

37: end function

38: function Probe (Constraint e)

39: Push a new scope into internal stack of SMT-solver

40: PC’ ← PC ∧ e

41: if PC’ is satisfiable then

42: PC ← PC’

43: return true

44: else

45: Pop the scope from internal stack of SMT-solver

46: return false

47: end if

48: end function

49: function Next (ASCII symbol a)

50: b ← most probable symbol in bigram (a, b)

51: return b

52: end function

Conservativeness of the algorithm. Each optimized

test case leads a target program through the same path as

a corresponding non-optimized version. Before applying

new constraints to the current PC, the optimizer tries ap-

plying it in a fresh new scope of an external SMT-solver.

If it fails, the optimizer safely pops the scope out of the

stack rolling the PC back to its previous version. Only in

case when the new constraint does not violate the current

PC, the optimizer is allowed to apply it.

Results. In order to test the proposed system we have

implemented a tool on top of the LLVM compiler infra-

structure [10] and CVC4 [11] SMT-solver. We have also

used a bigram model based on very large language cor-

pora [12]. Note that before starting to work with the sys-

tem a user should write a simple driver in the C-language.

Сибирский журнал науки и технологий. Том 20, № 1

 38

Experimental results

Function Input Coverage None Basic Bigram

strlen [6] 5:100% – 0.08 0.10

strnlen [6]5 6:100% – 0.08 0.10

strcmp [6][6] 15:100% – 0.04 0.05

strncmp [6][6]5 16:100% – 0.04 0.05

sysfs_streq [6][6] 39:100% – 0.05 0.07

strcpy [6][6] 35:100% – 0.08 0.10

strncpy [6][6]5 36:100% – 0.08 0.10

strcat [10][5] 40:100% – 0.07 0.08

strncat [10][5]4 41:100% – 0.07 0.08

strstr [6][3] 19:90% – 0.12 0.14

strnstr [6][3]2 4:80% – 0.09 0.10

strpbrk [6][6] 10:80% – 0.03 0.03

The system has been tested on 12 string-processing

functions from the Linux [13] repository. Each function

takes integer values and strings as an input. Experimental

results are represented in table. The Input column displays

an encoded format of the input data. Here notation

“[n]” = {a1, a2,...,an−1,’\0’} represents a null-terminated

string of symbolic values ai; k represents some concrete

integer. For example, strnlen “[6] 5” means that strnlen

takes a single symbolic string of size 6 and an integer

literal “5”. The only exception is strpbrk function that

takes concrete string “aeouy” as its second argument.

Code coverage estimated with gcov tool is displayed

in column Coverage in format x:y %, where x is a number

of generated test cases and y is a percentage of covered

instructions. Columns None, Basic and Bigram display

average values of readability estimation N for test data

generated during different experiments.

Experimental results. The results of test generation

without optimization are displayed in column None. As

the non-optimized data includes no alphabetic characters,

the readability estimation is not defined in this case. The

Basic method involves only the first, Narrowing phase of

the optimization process. In this case, readability estima-

tion N ≈ 0.07 in average with standard deviation σ = 0.03.

On the other hand, the Bigram method involves both,

Narrowing and Concretization phases of the optimization.

In case of Bigram N ≈ 0.08 in average and σ = 0.03. Thus,

the Bigram method shows the best results in this experi-

mental study.

Discussion. Let us discuss the experimental results

in more details on the example of the strcpy function.

Strcpy function takes two string arguments - buffer A and

source B. It copies data from B to A modifying A. It then

returns the pointer to the modified version of A repre-

sented as A’. Thus, the format of each generated test case

is (A, B) => A’. In order to give meaning to the discus-

sion, let us suppose that the generated test cases have to

be verified by a human.

Each non-optimized output contains no printable char-

acters. Thus, we represent generated data as arrays

of 8-bit integers. In this case, the real data generated

with the help of CVC4 looks like: {1, 1, 1, 1, 1, 0},

{1, 1, 1, 0, 0, 0} => {1, 1, 1, 0, 0, 0}. Making sense

of this data might be confusing to anyone trying to evalu-

ate the quality of the implementation of the strcpy

function. On the other hand, the so-colled Bigram method

produces well-readable and less-confusing data: (“kesth”,

“pre”) => “pre”.

Configuring the optimizer. The optimizer can be con-

figured in many ways. If the first symbol of the string is

not constrained, then external SMT-solver tends to return

similar results for all strings. As a consequence, without

randomization of the first symbol the results look like

“athes”, “ath” => “ath” etc. Moreover, as the Bigram

method uses the most probable values of the second char-

acters of each bigram sometimes it tends to produce

cycles like “athesthes....” etc. In order to avoid such

cycles, we use the same selection algorithm as the “rou-

lette wheel” method [14].

In addition to the bigram-based improving readability

optimization we have implemented a simple “optimizer”

for numeric values. In fact, numeric values generated by

SMT-solvers tend to vary in a very wide range. For ex-

ample, let us suppose we are testing some implementation

of the quicksort algorithm. One of the generated test cases

might look like: {22773760, 22773760, −2147483648,

2147483584} 4 => {−2147483648, 22773760, 22773760,

2147483584}. It is highly confusing to anyone who

is trying to make a meaningful interpretation of such

an unreadable test data. The optimizer incrementally tries

to constraint each integer symbolic value within a mem-

ory graph M using Probe method from Algorithm 1.

Let ai be a symbolic integer contained by M. At first,

the optimizer tries to apply the constraint (−10 ≤ ai ≤ 10)

to each ai. If it is not successful it then tries to apply

(−100 ≤ ai ≤ 100) etc. The optimized version of the

test case mentioned before looks like: {2, 2, −3, 5} 4 =>

{−3, 2, 2, 5}.

Reliability. In fact, the readability estimation of strings

of different length varies in a wide range. The value of

“pure” readability estimation ()P̂ S tends to zero for very

long strings. As a result, it is not reliable to compare the

readability estimation of strings of different length. This

negative effect is eliminated by normalization. We should

further note that the goal of our research does not include

the examination of the bigram model itself. However,

in order to verify the readability estimation method used

in the experimental study we tested it in isolation. We

have tested this method using a list of Top-100 English

words. The resulting readability estimation is 0, 10 which

is compatible with the experimental results. Finally,

the reliability of the experimental results achieved by any

Информатика, вычислительная техника и управление

 39

code-based test generator depends on the provided code

coverage. In the given experiments the instruction cover-

age is 95% in average and it is 100 % for 9 functions. In

case of functions with non-100 % coverage the NULL-

returning branch is not covered. We can confidently say

that the obtained results are reliable enough.

Conclusions. This work introduces a new method of

readability optimization in context of Dynamic Symbolic

Execution based on a natural language model. This

method has been successfully examined against 12 string-

processing functions from the Linux repository. The ex-

perimental results show that this algorithm significantly

improves the readability of automatically-generated

test data. The readability of the optimized test cases

is compatible to the readability of human-written texts.

Developers who manually verify generated test data

would take advantage of using this method.

References

1. Anand S., Burke E. K., Tsong Yueh Chen et al. An

Orchestrated Survey of Methodologies for Automated

Software Test Case Generation. Journal of Systems

and Software. 2013, Vol. 86, No. 8, P. 1978–2001.

Doi: 10.1016/j.jss.2013.02.061.

2. Cadar C., Godefroid P., Khurshid S. et al. Sym-

bolic Execution for Software Testing in Practice: Prelimi-

nary Assessment. Proceedings of the 33
rd

 International

Conference on Software Engineering (ICSE ’11).

ACM, New York, 2011, P. 1066–1071. Doi:

10.1145/1985793.1985995.

3. Tracey N., Clark J., Mander K. et al. An automated

framework for structural test-data generation. Proceed-

ings of the 13
th

 IEEE International Conference on Auto-

mated Software Engineering. 1998, P. 285–288. Doi:

10.1109/ASE.1998.732680.

4. Cadar C., Ganesh V., Pawlowski P. M. et al. EXE:

Automatically Generating Inputs of Death. Proceedings

of the 13
th

 ACM Conference on Computer and Communi-

cations Security (CCS ’06). ACM, New York, 2006,

P. 322–335. Doi: 10.1145/1180405.1180445.

5. Godefroid P., Klarlund N., Sen K. DART:

Directed Automated Random Testing. Proceedings of the

2005 ACM SIGPLAN conference on Programming lan-

guage design and implementation. 2015, P. 213–223.

Doi: 10.1145/1064978.1065036.

6. King J. C. Symbolic Execution and Program Test-

ing. Communications of the ACM. 1976, Vol. 19, No. 7,

P. 385–394. Doi: 10.1145/360248.360252.

7. Barr E. T., Harman M., McMinn P. et al. The Ora-

cle Problem in Software Testing: A Survey. IEEE Trans-

actions on Software Engineering. 2015, Vol. 41, No. 5,

P. 507–525. Doi: 10.1109/TSE.2014.2372785.

8. Afshan S., McMinn P., Stevenson M. Evolving

Readable String Test Inputs Using a Natural Language

Model to Reduce Human Oracle Cost. IEEE the 6
th

International Conference on Software Testing, Verifica-

tion and Validation. 2013, P. 352–361. Doi:

10.1109/ICST.2013.11.

9. Sen K., Marinov D., Agha G. CUTE: A Concolic

Unit Testing Engine for C. Proceedings of the 10
th

 Euro-

pean software engineering conference held jointly with

13
th

 ACM SIGSOFT international symposium on Founda-

tions of software engineering (ESEC/FSE-13). 2005,

P. 263–272. Doi: 10.1145/1095430.1081750.

10. Lattner C., Adve V. LLVM: A Compilation

Framework for Lifelong Program Analysis & Transfor-

mation. Proceedings of the International Symposium on

Code Generation and Optimization: Feedback-directed

and Runtime Optimization (CGO ’04). IEEE Computer

Society, Washington, 2004, P. 75.

11. Barrett C., Conway C. L., Deters M. et al. CVC4.

Proceedings of the 23
rd

 International Conference on

Computer Aided Verification (CAV’11). Springer-Verlag,

Berlin, Heidelberg, 2011, P. 171–177.

12. Jones M. N., Mewhort D. J. K. Case-sensitive

letter and bigram frequency counts from large-scale Eng-

lish corpora. Behavior Research Methods, Instruments

and Computers. 2004, Vol. 36, No. 3, P. 388–996.

13. Linus Torvalds et al. Linux kernel source tree.

Available at: https://github.com/torvalds/linux (accessed:

20.11.2018).

14. Lipowski A., Lipowska D. Roulette-wheel selec-

tion via stochastic acceptance. Physica A: Statistical Me-

chanics and its Applications. 2012, Vol. 391, No. 6,

P. 2193–2196. Doi: 10.1016/j.physa.2011.12.004.

© Yakimov I. A., Kuznetsov A. S.,

Skripachev A. M., 2019

Yakimov Ivan Aleksandrovich – Senior lecturer; Institute of space and informational technologies, Siberian

Federal University. E-mail: ivan.yakimov.research@yandex.ru.

Kuznetsov Aleksandr Sergeevich – Cand. Sc., Assistant professor; Institute of space and informational technolo-

gies, Siberian Federal University. E-mail: ASKuznetsov@sfu-kras.ru

Skripachev Anton Mikhailovich – Master’s degree student; Institute of space and informational technologies,

Siberian Federal University. E-mail: skram@list.ru.

Якимов Иван Александрович – старший преподаватель; Институт космических и информационных

технологий, Cибирский федеральный университет. E-mail: ivan.yakimov.research@yandex.ru.

Кузнецов Александр Сергеевич – кандидат технических наук, доцент; Институт космических и информа-

ционных технологий, Сибирский федеральный университет. E-mail: ASKuznetsov@sfu-kras.ru.

Скрипачев Антон Михайлович – магистрант; Институт космических и информационных технологий,

Сибирский федеральный университет. E-mail: skram@list.ru.

Сибирский журнал науки и технологий. Том 20, № 1

 40

