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The paper discusses new classes of models of multidimensional inertia-free systems with a delay in the conditions of
a lack of a priori information. The subject is multidimensional discrete-continuous processes, the components of the
vector of output variables of which are stochastically dependent in an unknown way. There are also processes, through
some channels of which aprior information corresponds simultaneously to both the parametric and nonparametric type
of source data about the studied process. The mathematical description of such processes leads to a system of implicit
nonlinear equations, some of which will be unknown, while others will be known with accuracy to the parameter vector.
The main purpose of a model of an object having stochastic dependencies of output variables is to find a forecast of
output variables with known input variables.

To find the predicted values of the output variables from known inputs, it is necessary to solve a system of implicit
nonlinear equations. The problem is to solve a system that is actually unknown, when only equations for some channels
of a multidimensional system are known. Thus, a rather nontrivial situation arises when solving a system of implicit
nonlinear equations under conditions when, in one channel of a multidimensional system, the equations themselves are
not in the usual sense, and in others they are known accurate to parameters. Therefore, an object model cannot be con-
structed using the methods of the existing identification theory because of a lack of aprior information. The purpose of
this work is the solution of the identification problem in the presence of a partially-parameterized discrete-continuous
process, and despite the fact that the parameterization stage cannot be overcome without additional priori information
about the process under study.

The control algorithm for multidimensional processes with dependencies of output variables is a sequential multi-
step algorithmic chain that allows finding the control action and bring the object to the desired state.

Computational experiments to study the proposed models and to control multidimensional discrete-continuous proc-
esses have shown quite satisfactory results. The article presents the results of computational experiments illustrating
the effectiveness of the proposed technology for predicting the values of output variables from known input variables, as
well as for managing these processes.

Keywords: multidimensional discrete-continuous process, identification, control, T-models, KT-models.

HETTAPAMETPUYECKHUE MHOT'OIHAT'OBBIE AJITOPUTMBI MOAEJIUPOBAHMUSA
N YIIPABJIEHUSI MHOT'OMEPHBIMHU BE3BIHEPIIMOHHBIMU CUCTEMAMUA

. . Spemenxo

Cubwupckuii penepanbHBIA yHUBEPCUTET
Poccuiickas ®eneparnms, 660074, yn. Axkagemuka Kupenckoro, 26k 1
E-mail: YareshenkoDI@yandex.ru

B nacmoaweii cmamve paccmampugaiomcs Hogvle KIACCbl MoOenell MHO2OMEPHBIX 0e3bIHePYUOHHBIX CUCmeM
€ 3anasovieaHuem 6 YCIO8UAX HeOOCMAmKa anpuoprou uxgopmayuu. Peuv udem o MHO20MepHBIX OUCKpemMHO-
HenpepuieHbIX NPoYeccax, KOMNOHEHMbL 6EKMOPA BLIXOOHbIX NEPEMEHHBIX KOMOPLIX CIOXACMUYECKU 3d6UCUMbL 3apa-
Hee HeuszgecmHuiM 06pazom. Ho maxowce cywecmeyrom npoyeccol, no HeKOMOPLIM KAHANAM KOMOPbIX ANPUOPHASL
ungopmayus coomeemcmeayem 0OHOBPEMEHHO KAK Napamempuieckomy, max u Henapamempuyeckomy muny ucxoOHblx
0annvix 00 uccredyemom npoyecce. Mamemamuueckoe onucanue noOOOHbIX NPOYECcco8 NPUGOOUM K CUCIeMe HEABHbIX
HeUHEHbIX YPaGHeHUll, OOHU U3 KOMOpbIX OYOYm Heusgecmubl, a Opyaue usgecmusbl ¢ MOYHOCHbIO 00 6eKMOpa napa-
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Mmempog. OCHOBHOe HA3HAYEHUe MOOenu 00beKmd, UMEWe20 CIOXACmuYecKue 3a8UCUMOCU 8bIXOOHbIX NePEMEHHDBIX,
COCMOUm 8 HAXO0NCOEHUU NPOSHO3A BLIXOOHBIX NEPEMEHHbIX NPU UZBECHIHBIX 6XOOHbBIX.

s HaxoocOeHUus NPOSHO3HBIX 3HAYCHUL BbIXOOHLIX NEPEMEHHbIX N0 U3BECMHbIM 6XOOHbIM He0OX00UMO peuums
cucmemy Hes6HuIX HeNUHEUNHbIX ypasHeHul. Y mym 603nukaem CmpaHHas Cumyayus, maxk KaK HeobXooumo peuums
cucmemy, KOMopasl Ha CAMOM Oele HeU38eCmHA, HO MO2Ym OblMb AUULbL U36ECMHbL YPAGHEHUS N0 HEKOMOPbIM KAHALAM
MHO20MEpHOU cucmembl. Takum o006pazom, 603HUKAem O00B80JbHO HEMPUSUALbHASL CUMYAYUS PEUEHUS] CUCTEMblL Hesl6-
HbIX HETUHEUHBIX YPABHEHUL 8 YCI08USAX, K020d N0 OOHUM KAHAIAM MHOZOMEPHOU CUCTNEMbl CAMUX YPAGHEHUL 8 00blU-
HOM CMbICie Hem, A NO OPY2UM OHU U38ECMHbL C MOYHOCMbIO 00 napamempos. Tlosmomy modenv 06bekma ne Moxicem
ObIMb NOCMPOCHA ¢ NOMOWBIO MEMOO08 CYUWeCmayoujelti meopuu UOeHMupUKayuu 6 pesyibmame HeOOCMAmMKa anpu-
oprotl ungopmayuu. OCHOBHBIM COOEPICAHUEM HACMOsUel pabomol SI8IAemMcs peuteHue 3a0ayu UOeHMU@GUKayuyu npu
HAIUYUU YACMUYHO-NAPAMEMPUZ0BAHHO20 OUCKPEMHO-HENPEPLIBHO20 NPOYeCccd U Npu MoM, 4mo 3man napamempusa-
yuu He Modicem Oblmb nPeoodoner 6e3 OONOIHUMENbHOU anpUopHOU uHGopmayuu 06 ucciedyemom npoyecce.

Anecopumm ynpaenenuss MHO2OMEPHBIMU NPOYECCAMU C 3ABUCUMBIMU BbIXOOHbIMU NEPEMEHHBIMU NPEOCMABIAen Co-
001l NOCIE008AMENLHYI0 MHO2OUALO8YI0 ANICOPUMMUYECKYI0 YENOUKY, NO360ASI0WYI0 HAUMU YNpaeisowee 8030elic-
8ue U npueecmu 00bEKM 6 Jceiaemoe COCMosHue.

Buiuuciumenvuvie sxcnepumenmsl o ucciedo8anuio npeoiaeaemvlx Mooeiel U no YnpasieHur0 MHO2OMEPHbIMU
OUCKDEMHO-HEeNPEPbl8HbIMU NPOYECCamu NOKA3AIU O0CMAMOYHO YO081emeopumenvHvle pesyibmamol. B cmamve
NPUBOOSMCSL PE3YTIbMAMbL BLIYUCTUMETbHBIX IKCHEPUMEHMO8, ULTIOCMPUPYIOWUX dhexmusnocms npeoiazaemoi
MEXHON02UU NPOSHO3A 3HAYEHULL 8bIXOOHBIX NEPEMEHHBIX N0 U3BECIHBIM 6X0OHbIM, A MAKNHCe NO YNPAGIEHUIO OAHHbIMU
npoyeccamu.

Kniouegvie cnoea: mmocomepnvlii OUCKpEmMHO-HENPepvl8Hblll npoyecc, udenmuguxayus, ynpaeienue, T-modenu,

KT-moo0enu.

Introduction. Consideration and study of multidi-
mensional inertial processes with a delay, which have a
stochastic dependence of output variables, is a relatively
urgent task. Since such processes are typical for many
popular industries, such as metallurgy (steel melting),
construction industry (cement production), energy (coal
burning), oil refining (increasing the cold flow of diesel
fuel) [1], as well as in active systems, such as the educa-
tional process (acquisition of knowledge by University
students) [2]. Such processes are characterized by the lack
of necessary aprior information. The researcher, in such
circumstances, should model and manage such multidi-
mensional discrete-continuous processes. These processes
are dynamic in nature, but controlled at discrete time in-
tervals, including various ones. Inertia-free systems are
considered with known delays, for example, when the
object's time constant is 5—10 minutes, and the control of
the output variable is measured once every two hours.
This leads to the dependence of output variables, for ex-
ample, in the production of cement, the main output indi-
cator — the activity of cement (compressive strength)
depends on another output indicator — the fineness of
grinding.

Processes with stochastic dependence of output vari-
ables refer to T-processes [3]. The main point here is that
the identification of such objects should be carried out in
a way that is not traditional for the existing identification
theory [4]. There are also cases when aprior information
corresponds simultaneously to both nonparametric and
parametric types of source data about the studied. Such
processes refer to KT-processes [3].

The main feature of T-processes and KT-processes is
that the mathematical description of an object is repre-
sented as some analog of a system with partially param-

eterized functions F, (u,x,a)=0, j= I,n and unknown

functions F, (u,x)=0, j= 1,n . Thus, the identification
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problem is reduced to the problem of solving a system of
nonlinear equations of a partially parameterized discrete-
continuous process relative to the components of vector

x=(x,X,,....x,) , with known values of input variables

u= (ul,uz,...,um) . Specific identification tasks will dif-

fer in different volumes of aprior information through
various channels of the multidimensional process, and in
their specific flow.

Researchers have to deal with a system of different
types of equations from the point of view of mathematics,
the solution of which requires the development of special
methods [5]. In this case, it is advisable to use the theory
of nonparametric systems [6; 7].

Processes with the stochastic dependence of output
variables. As noted earlier, T-processes are multidimen-
sional inertia-free processes with stochastic dependence
of output variables. In fig. 1, we consider a multidimen-
sional system that implements the T-process.

In fig. 1 the following notation is used: u = (u,...,u,, ) —
m-dimensional vector of input variables, x =(x;,...,x,) —

n-dimensional vector of output variables, é(t) — random

interferences effecting the process. The vertical arrows on
the output variables show their dependencies. Through
various channels of the multidimensional process, the
dependence of the j-th component of the vector can be
represented as a certain dependence on certain compo-

nents of the vector u : x*/” = S (u<‘i>), j=ln.

Such functions are determined basing on the available
aprior information. Such correlations are called a compos-
ite vector. A composite vector is a vector composed
of some components of input and output variables,
in particular, it can be any set, for example

x<5> :(u29u59u7:u8)’ x<6> :(u3’u4’u7’x2) [8]
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Fig. 1. The multidimensional system that implements the 7-process

Puc. 1. MHoromepHas cucrema, peanusytomas 7-nporecc

The mathematical description of an object is repre-

sented as a system of implicit functions of the next form
F, (z?(t),)_c(t)) =0, j=1n . The identification problem

is reduced to the problem of solving a system of nonlinear

equations:
(#(0),%(1))=0, j=Ln

relative to the vector components x , with known values
of the input variables u .

F.(u

J

()

Note that the type of equations F; (-), j = 1,n remains

unknown and cannot be interpreted as a model of the
process under study. The task is to model such processes,
i.e. T-processes.

Partially-parameterized multidimensional proc-
esses. Partially-parameterized multidimensional KT-
processes differ from T-processes because their aprior
information may correspond to a parametric type in some
channels, and nonparametric in others.

A feature of identifying a multidimensional object is
that the process under study is described by a system of
implicit stochastic equations of the form:

F-(u(t), x(t+r), &(t))zO, jzl,_n,

J
where for some channels the functions F ]() are not

2

known, and for other channels they are known, t — a de-
lay over various channels of a multidimensional system
[3]. In the future, for reasons of simplicity, Tt will be
omitted by shifting the values in the observation matrix
by a value t.

In this case, the system of equations will take the
form:

<j> _<j>
Fl(u ,X ,OL) 0,

<j> <j>
Fz(u 77 x™ ,oc):O,

F

<> <>\ -
n-1 (U s X ) - Oa

F, (u<j>,x<j>):0.

where 1:" i () are partially parameterized or unknown, o

is the parameter vector.

Modeling of multidimensional inertia-free proc-
esses. Multidimensional KT-models combine T-models
and K-models and represent a model in which there is a
set of relationships between input and output variables,
and they are known through some channels, for example,
based on known laws of physics, and such dependencies
are unknown through other channels. I. e., the presence of
aprior information on various channels of a multidimen-
sional object corresponds to both parametric and non-
parametric types of source data. Therefore, we present the
model system in the following form:

E <u<~’>,x<'/>,d)

)
Jj=1Ln,

r <G> <j> = =\ _ .
Fn,(u X ,xs,us)—O,

0;

d:

- <j> <j> .
Fz(u , x>, 0;

E

n

(u<’>,x<’>,7cs,ﬁs): 0.

where X_,ii; — the time vectors (the data set received by

the s-th moment of time), and #~/”,x*/” — the composite
vectors. However, even in this case, some functions
F (-), j=1,n remain unknown. Therefore, the problem
of constructing KT-models is considered in conditions
of nonparametric uncertainty, i.e. in conditions when
the system (4) is known only through some channels
and is not known to the accuracy of parameters through
others.

The identification problem comes to the fact that for
given values of the vector of input variables, it is neces-
sary to solve system (4) with connection to the vector
of output variables. For some channels of a multidimen-
sional system, for which equations are known up to pa-
rameters, the coefficients are found, for example, by
stochastic approximations or the least-squares method
[9; 10]. For the other channels, where the equations with
accuracy up to the parameter vector are unknown, the
following two-step algorithmic chain [3] must be applied,
which allows to find the predicted values of the vector of
output variables from the known input ones. In the first
step, the residuals are calculated using the following for-
mula:

&)
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where F(u<j>,x<j> (i),is,ﬁs) accepted in the form of a

nonparametric estimate of the regression function Nada-
raya-Watson [11]:

g (i)=Fy (”<j>’x/ (’)) =
<m> —u l]
lzl:x [I]H d){ S k J ©)

.'u‘

=x;(i)-

s <m>

znq{ utl)

i=l k=1

where j =1,n, <m> — the dimension of the composite
vector u, , then this notation is used for other variables.

Moreover, the dimension of the composite vector may be
different for different channels. Bell-shaped functions

(1)() and the blur parameter Cyu, satisfy certain conver-

gence conditions and have the following properties [12]:

O()<oo;lim_,, ¢, =0;

j ®(c5 (uf —uy[i]) Jdu =1; (7)
Q(u)
lim, ., e @ (ot (4 =1, [11)) = 8w =1, 1) ;
11m?—)00 SCS = N (8)

The second step is to evaluate the conditional mathe-
matical expectation:
— <J> o —1n
x; =M {x|u™”,6=0}, j=1Ln. 9)

As a result the forecast for each component of the out-
put variable vector will be as follows:

o[ Hjﬁ@[ewl]
csu

A ky=1 Cse
7 s <m> n ’
Sfie[ e

=Ln,

where the bell-shaped functions can be taken as a triangu-
lar core (11) and (12), and satisfy the conditions presented
above.

|”k, —uy, [i]| |u

k Uk [i]| <1

q)(uk, _ukl[i]Jz - Cou ' Csu (11)
o 0, b~ >1.
cSU
fo-at] Jo-ei|
® 8"—[’]}: GG gy
[ Cse 0 |0_8k2[i]|>1

CSS

The nonparametric algorithm (6), (10) is a two-step
algorithmic chain that allows to find the predicted values
of the components of the output vector for known compo-
nents of input variables, in the case of stochastic depend-
ence of output variables.

The relative standard deviation is taken as the error
function:

, j=Ln, (13)

i1
where x'(t) — observation on the object, £ (u<j g (t)) -

forecast values of the object's output variables, M, —the

average value for each component of the vector.

The problem of managing multidimensional dis-
crete-continuous processes. Consider the scheme of a
multi-dimensional object control system (fig. 2).

In fig. 2 the following notations are used:
u(t)= (u1 (1),uy (2),.ou, (t)) — input controlled variables
of the process; — input free, but controllable variables of
the process; x(t)z(xl(t),x2 (t),...,xn (t)) — output vari-

ables of the process; x* = (xl,...,x: ) € Q(x* ) c R" —setting

action, §(t) — random interferences affecting the process.

Control of T-objects is considered in conditions of
nonparametric uncertainty, i. e. in conditions when the
process model with accuracy up to the parameter vector is
completely absent.

l &(t)

x(t)

Object — >

Control device

[y

M,

l x;

Fig. 2. Diagram of a nonparametric control system of an inertia-free object

Puc. 2. Cxema HenmapaMeTpHIECKONW CHCTEMBI YIIPABICHHS
0e3BIHePLIUOHHBIM 0OBEKTOM
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In this case, the known techniques are not applicable
and you should use other approaches to solve the prob-
lem.

In the problem of controlling a multidimensional
process with stochastic dependence of output variables,
the following multi-step algorithmic chain must be used:

we take the input variable u; () arbitrarily from the area
Q(ul) . Any other input variable can be taken from the

specified area at any time. The next input variable u; (t)

is found in accordance with the following algorithm:

s * i \<n> G—

. U, —u X:— X
Susal 4 || U
i=1 Cy, =1 Cx,

<p> * i
Hy —Hy
X H(D
* v=1 [ C]J.V
U, = , (14
2 s * i \<n> X —x
u u i
ZCD 1 1 H(D J J |«
i=1 u, Jj=1 cx,
<p> * i
Ky —Hy
X H(D
v=1 { cuv

where <n>, < p> — dimension of the corresponding
composite vectors x and p, <n><n <p><p.

Then we find the input variable u; (t ) as follows:

s * i * i \<n> =y

ol u —u U, —u i ;
Zu:l;q) 1 1 10} 2 2 Hq) J J x
i=1 ¢y, Cu, )l S,
<p> ®
% HCD Hy —Hy
* v=l Cu,
uj = ,(15)
S 1 1 <n> —
ZCD U= || Y2t HCD WA
i=1 u, Cu, )=l ¢,
<p> L
y HCD My —Hy
v=l Cu,

And then the control algorithm continues to find each
component of the object's input, and with each subsequent
step, the values of the input variables found in the previ-
ous step are added to the formula. The control algorithm
for a multidimensional system:

* i \<n> x"f

K k-1 i
; u, —u, —X;
S [T = o 2 |«
=l k=l G, Jj=1 x,
<p> ® i
% H(D Ky —Hy
* v=1 ‘y, P
uks— - - , k=1m.(16)
s k-1 i \<n> _
u, —u X; =X
o M [T x
i=1 k=1 Cy,  )j=l S,
<p> * 0
% HCD My —Hy
v=l ¢

In the control algorithm (16), the blurring parameters
for input and output variables remain configurable
Cyp 5 Cx, and ¢, , the following formulas can be used for

. _ * i _ * i
them: cuk—(x‘uk—uk‘+n, cXJ—B‘xj—xj‘+n and

o =Ty —My|+n , where o, B and y some parame-

ters greater than 1, and the parameter 0 <m <1 . Note that

the selection of blur parameters ¢, , ¢

u, 4 X/-

and ¢, is per-

formed at each control cycle. In this case, if ¢, is defined

first, then the definition ¢, and ¢, is carried out accord-
S .

ing to this fact. The order in which the blurring parame-
ters ¢, ,¢, and ¢, are defined is not important.

Xj

Often in real process control tasks, the number of
component vector # is greater than the number of com-
ponent vector x . If the dimension of the vector u
exceeds the dimension of the vector x, i. e. m>n,
it is usually done as follows. To the number of component
vector it some (non-essential) components of the vector

u are included, so that the dimension of the vector u
and x to be equal.

Computational identification experiment. A multi-
dimensional object with input variables
u = (uy,uy,u3,u,) and output variables x =(x;,x,,%;)

was used for the computational experiment. A training
sample of input and output variables was formed for the
object under consideration, based on a system of equa-
tions consisting of two parametric and one nonparametric
channels. As a result, a training sample was obtained

g, X, where u , X, are the time vectors. In case we had a

real object, the training sample would be obtained in the
process of measurements performed by the available con-
trols.

After receiving a sample of observations i ,X,, you

can start the task under study — finding the predicted
values of output variables x based on known input
variables u . The forecast for each component of the out-
put variable vector is made according to the formula (10).

The configurable parameters are the blur parameters

¢, and c_ , which in this case are equal to 0.4 and 0.3,

Su
respectively (the values were determined as a result
of numerous experiments to reduce the quadratic error
between the output of the object and the model). Sample
volume s =1000, uniform interference that affects the

components of the vector of output variables & =0,07 .
Graphs for the outputs of the object x;,x, and x; (fig. 3-5).

In fig. 3-5 “point” denotes the output value of the ob-
ject, and “x” are values of the patterns found by the algo-
rithm (5), (9). For clarity of the results in the figures, there
are 20 sample points. The model describes the object
fairly well with 7 % interference affecting the components
of output variables.

Computational control experiment. The results of
computational experiments for a multidimensional object

with input variables u = (u,u,,us,u,) and output vari-

SE

ables x =(x,,x,,x;) using a multistep control algorithm
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(13). For the object under consideration, the number of
component vector u is greater than the number of com-

ponent vector x . So replace u, (¢)=p(¢) to make the
dimension of the vector # equal to x . The input variable
is free but controlled () €[0, 3] .

We underline that the researcher is not familiar with
the type of system of equations that describes a controlled
multidimensional object. Measurements of input and out-
put variables are used as information about the object
under study.

First, we present the results of the multistep control

algorithm (16) with a variable step setting effect xf (t)
(fig. 6).

As you can see from fig. 6, the output of the object
x,(¢) is quite close to the setting effect x; (¢). Here are
the results of the algorithm with a soft changing setting
effect x; (1) (fig. 7).

Here are the results of the algorithm when the task
x; (¢) is random (fig. 8).

Fig. 8 shows that the output of the object x;(¢) is also

quite close to the setting effect x; (¢). None of the known

regulators can cope with such a task when the setting ef-
fect is random [14].

Still, this case is interesting from a theoretical point
of view.

J51(2‘)“ »
%(2)
100 . *
X X X
X x « < u
sr 4
1
x x
x x » ¢
0 x 5 10 . 15 0

Fig. 3. The predicted values of the output variable x; with an interference of 7 %

Puc. 3. [Ipornosuele 3Ha4eHUs BBIXOJAHOM IIepeMEHHOM X, 1Ipu nomexe 7 %

TQ(I)A .
% (1) s X 3.(
. x .
X X X
ar . )< L
L)
X ]
& X e X
4 . X « X X
5 s o X ® y 2
o+ .
%
f
0 IS 10 iS '.I’O "

Fig. 4. The predicted values of the output variable x, with an interference of 7 %

Puc. 4. [Ipornosuele 3Ha49€HUs BBIXOAHOM IIEPEMEHHON X, IIpu nomexe 7 %
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x() 4 x ¥

X ®
X

x % t

»
t t t »

0 5 10 15 20
Fig. 5. The predicted values of the output variable x; with an interference of 7 %

Puc. 5. [Ipornosuele 3Ha49€HMs BBIXOAHOM IIEPEMEHHON X3 IIpu nomexe 7 %

Tl(f)n
% (t)
! cx v ¥¥
2+ >o<>o<x>o<¥
xS gn¥
¥ x % ¥ ¥ .
0 5 10 5 0

Fig. 6. Control under the setting action xl* (t) in the form of a step function

*
Puc. 6. Yripapienue npu 3afaroIeM BO3AeHCTBUN X, (t) B BUJIC CTyTIeHUATOH QpyHKINU

Tg(f)“
rZ(f)_ i
7 X 38
x-
§¥
M
X
1T X.x
xxo?(
>.<.
)
X o X
* X f_
0 I5 ]I.O iS éO’

Fig. 7. Control under the set action x; (t) in the form of a soft changing function

*
Puc. 7. Yr{paBneHHe IIpu 3aJar0lICM BO3ICUCTBUM X, (t) B BHU/IC IIJIABHO U3MECHAIOIICHUCS q)yHKL[I/II/I
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Fig. 8. The dependence of the output of the object x; (t) on the setting effect x; (t) R

which is of random nature
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Conclusion. In this paper, the problem of identifica-
tion and control of multidimensional inertia-free systems
with a delay in the conditions of a lack of aprior informa-
tion considered. We note the fact that identification
and control problems are considered under conditions
of nonparametric uncertainty and, as a result, can not be
presented with accuracy to a set of parameters. Well-
configured modeling and control algorithms can be suc-
cessfully applied in real control systems, diagnostics, de-
cision-making, etc. [15].

These computational experiments on identification
and control have shown satisfactory results of modeling
multidimensional processes. At the same time, we inves-
tigated issues related to the introduction of various inter-
ference, different volumes of training samples, but also
objects of different dimensions.
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