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The purpose of the study is to develop a technological process mathematical model of creating permanent joints of
dissimilar materials based on electron-beam welding using machine learning algorithms. Each of the connected ele-
ments is a responsible unit of the complex device, due to this fact, strict criteria are set for the quality of the welded
Jjoint. In essence, the set task is a regression task. There are many algorithms suitable for solving the regression prob-
lem. However, often the use of one algorithm does not provide sufficient accuracy of the result. One way to solve this
problem is to develop a composition of algorithms to compensate for the problems of each of them. One of the most
effective and potent compositional algorithms is the gradient boosting algorithm. This algorithm use will improve the
quality of the regression model. The proposed model will allow the technologist to set the process parameters and to get
an assessment of the final product quality, as well as by setting input and output values. The use of assessment methods
and forecasting will reduce the time and labor costs of searching, developing and adjusting the process. A description
of the gradient boosting algorithm is given, as well as an analysis of the applicability of this algorithm to the model and
a conclusion regarding the areas of its applicability and the reliability of the forecasts obtained by its direct use. In
addition, we consider the process of direct model training based on the data obtained as part of search experiments to
improve the quality of final product. The results of the applicability analysis allow us to judge the admissibility of using
the proposed method for processes that have similar statistical dependencies. The application of the proposed approach
will make it possible to support the adoption of technological decisions by specialists in electron-beam welding during
the development of the technological process and when new types of products are put into production.

Keywords: electron-beam welding, technological process, experiments, gradient boosting, machine learning.
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Lenvio uccneoosanus sensemcs co30aHue MamemMamudeckol MoOeiu mexHOI0SUeCK020 npoyecca u3eomogieHus
HEPA3beMHbIX COCOUHEHULl PAZHOPOOHBIX MAMEPUALO8 HA OCHOBE JJIeKMPOHHO-YHeB0U CEAPKU C UCTIONb30BAHUEM aJl-
20pUMMO8 MAWUHHO20 00yyYenus. Kaicovlil u3 coeOuHAeMbIX 21eMeHmo8 npedcmaegisien coboll OmeemcmseeHHblll y3e
KOMNJIEKCHO20 YCIMPOUCMEA, 8 CE:A3U C YeM BbICINAGISIIOMCA JHCeCMKUEe KPUMepuu K Kayecmay C8apHo20 cOeOUHeHUs.
B cywynocmu, nocmaenennan 3aoaua npedcmaensiem cobou 3aoavy peepeccuu. Cyujecmeyem MHONCECMBO AN20PUM-
MO8, NOOXO0sUX 051 pewtenusi 3a0aqu peepeccu. QOOHAKO 3a4ACMYI UCNOAb308AHUE 00OHO20 ANOpUmMa He obecne-
yugaem OOCMAmMoYHOU MOYHOCMU NOJYYeHHO20 pe3yavmama. OOHuM u3 cnocobos peuieHus maxol npoonemvl 6sAemcs
nocmpoerue KOMRO3UYUU al20pummos 0 KoMnencayuu npobnem kaxcooeo uz Hux. OOHum u3 naubonee 3¢ghgexmus-
HbIX U MOUWHBIX ANI2OPUMMO8 KOMNO3UYUU AGIsiemcst epaduenmublit. bycmune. Hcnonvsosanue 0annoz2o aneopumma
nosvlcum Kavecmeo mooenu peepeccuu. Ilpeonazaemas Mooenb n0360IUM MEXHONOZY 3a0A6aMb NAPAMEMPbL MEXHOIO-
2UYECK020 npoyecca u NOYy4aAms OYeHKY Kauecmed KOHEYHO20 U30eiusl pAGHO KaK NO 3a0AHUI0 6XOOHBIX, MAK U 6bIX00-
HbIX 6enuyuH. Hcnonv3osanue memooos OYeHKu U NpOSHOZUPOBAHUE CHUUM BPeMEHHble U Mmpyoosvle 3ampambl
Ha NOUCK, ompabomKy u HalaoKy mexHonro2uueckozo npoyecca. Ilpusooumcs onucanue aneopumma 2paoueHmHozo
bycmunea, a makdice aHanu3 NPUMEHUMOCMU OAHHO20 AN2OPUMMA K MOOEIU, PAGHO KAK U 3aKIIOYeHUe KACAMENbHO
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HquopMamuKa, eblduciumenlbHas mexunuKka u ynpaejienue

obnacmeii e2o npumeHumocmu u docmoeepHocmu NPOCHO3086, NOJIy4demuvlx npu eco UCnojlb306adHuUlU. Kpozwe moceo, pac-
cmampueaemcs npoyecc Henocpe()cmeeHHoza O6y‘l€Huﬂ Mooenu Ha OCHOBe ()aHHblx, NOJIY4EeHHbIX 6 PpAMKAX npoeedeﬁuﬂ
HOUCKOBbIX DKCNEPUMEHMOE ons YIAYHUUeHusr ka4ecmeda KOHe4Ho2co uz0enusl. Pe3yﬂbmambl aHaiusza npumeHumocmu no-
360JIA110m cydumb o donycmwwocmu UCNOJIb306AHUA npedﬂoz)fceHﬂoeo Memooda 0ns npoyeccos, umerwux cxoacue cma-
mucmu4eckue 3a6UucCumocniu. HpuMeHeHue npedﬂoofceHHoeo nooxo00a no3eoaum ocywecmeums nO()()ep.?ICKy NpUuHAmMuUs
MmexHoJlocu4ecKux pemeHuﬁ cneyuaaucmoes no 9ﬂeKmp0HHO—ﬂyll€6012 ceapke npu 0mpa60m7<e mexHojocu4ecKkozo npo-

yecca u npu 8600e 8 NPOU3800CMBO HOBLIX BUOO8 NPOOYKYUU.

Kniouesvie cnosa: IJIEKMPOHHO-TIy4esds ceapka, MexXHON02UYeCKULL npoyecc, 3Kkcnepumenmasl, 2pa()ueHmelL7 6yc-

muHe, MauluHHoe 06yll€Hu€.

Introduction. For a number of technological proc-
esses the issue of selecting or conscious choosing optimal
parameters that depend on the quality criteria applied to
the final product is acute [1-5]. Moreover, this statement
is also true for ways to search for improvement or trans-
formation of an already established technological process.
For example, when you need to improve one of the pa-
rameters that determine the quality of the final product,
without changing the others, or without allowing them to
deviate by a certain amount. However, some processes,
such as electron-beam welding [6; 7] are relatively diffi-
cult to adjust or change, due to either insufficient knowl-
edge or integrated complexity, when it is impossible to
take into account all factors in a way that would allow us
to uniquely determine the potential changes and the im-
pact of parameters on the process as a whole. This leads
to the need to search for methods to simplify the process
of setting up and converting technological processes.

Considering the technological process as a closed sys-
tem with different input and output parameters, you can
build an appropriate model and then use it as a tool for
forecasting and optimization. The purpose of this research
was to study one of the machine learning algorithms as a
subject for creating a complex mathematical model that
would allow forming a conscious view of the choice of
process parameters in both local and global search for the
optimum determined by the technologist. This approach
will significantly reduce the time to set up the technologi-
cal process, as well as the cost of research, which will
ultimately have a positive impact on the cost and quality
of products.

In essence, the task is a regression task. One of the
most effective and potent composition algorithms is the
gradient boosting algorithm [8—13]. The use of the pro-
posed mathematical model will improve the quality of
control of the electron-beam welding process by imple-
menting support for technological decision-making using
the gradient boosting algorithm. In the future, this ap-
proach can be used for technological processes that have
similar statistical dependencies.

Description of the training data set. As the initial
data, the results of experimental studies conducted to im-
prove the technological process of electron-beam welding
of a product, the assembly of which consists of elements
consisting of dissimilar material, were used. The electron
beam welding unit where the research was conducted is
designed for electron-beam welding in high vacuum of
assembly units parts made of stainless steels, titanium,
aluminum and special alloys. The existing unit of elec-
tron beam welding provides repeatability of modes within
the capabilities of the implemented control system. Weld-
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ing operations were performed on simulators correspond-
ing to the technological product. To reduce energy input
during welding:

1. The welding current value decreased (IW).

2. The current focus of the electron beam increased
(IF).

3. The welding speed increased (VW).

4. The distance from the surface of the samples to the
electron-optical system changed (FP).

According to the set of technological modes parame-
ters, the minimum possible sizes of welding seams were
provided: the depth of the seam (Depth) and the width
of the seam (Width).

During the research, electron-beam welding
of 18 samples was performed. The results of metal-
lographic control on the size of the welding seam for each
sample were carried out in 4 cross-sections of the welding
seam. The accelerating voltage was constant in the range
of 19.8-20 kV. The obtained data set is collected as a part
of welding modes, sizes of welding seams in cross sec-
tions of all samples. Statistical indicators of the training
data set are shown in tab. 1.

Mathematical statement of the problem. The formal
statement of the supporting technological decision-
making problem in the process of electron-beam welding
is a regression problem, in which the characteristics of the
welded joint must be predicted based on a set of the tech-
nological process initial parameters. The mathematical
statement of the control problem in this case will be the
following. Let there be a set of process parameters: IW —
welding current value, IF — electron beam focusing cur-
rent, VW — welding speed, FP — distance from the sample
surface to the electron-optical system, Depth — weld
depth, Width — weld width. There is an unknown target
mapping dependency: y*: (IW, IF, VW, FP) — (Depth,
Width), the value of which is known only in the training
sample. You need to develop a mapping algorithm.

As part of this work, we have:

1. Data set: L = {x;, i}, i=1...n, where:

— X;, — welding current, mA;

— x;r — focusing current, mA;

- X, — welding speed, r/min;

— Xy — distance to Electron Optical Welding System
(EOWS), mm;

— YVaepn — Weld depth;

— Vwia, — weld width;

— x belongs to Q*, y belongs to 0%, where Q is the set
of positive rational numbers.

2. Model f(X), which predicts the values for each
object, where X is the technological process parameters,
in this case, the technological parameters of electron
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beam-welding. To evaluate the quality of the model f (X),
the following metrics are used: mean square error (MSE);
mean absolute error (MAE); coefficient of determination
R? (R2).

In this research, f{x) is an ensemble of «Gradient
Boosting» models (Gradient Boosting Regressor).

Gradient Boosting. The Gradient Boosting Regressor
model was implemented using the scikit-learn 0.22.2
package in Python 3.8 [14; 15]. Boosting is a technique
for constructing ensembles, in which predictors are not
built independently, but sequentially. This technique uses
the idea that the next model will learn from the mistakes
of the previous one. They have an unequal probability of
appearing in subsequent models, and those that give the
greatest error are more likely to appear [16]. The
algorithm is Gradient boosting:

1. Initialize the model with a constant value

f,0)= fo, fo =y, yeR:
Jy=argmin Y} L(3,.).

yooi=l
2. For each iteration ¢t = 1...M (M = n_estimators)
repeat:
a) count the pseudo-remains r;

n:{&meﬂ
' o (x;) F0)=1(x,t-1)

b) build a new algorithm A(x) as a regression on
pseudo-residues

, i=L..,n;

1 P} i= 1o
¢) find the optimum ratio of p, when A(x) relative to
the original loss function:

p, =argmin Y L(y,, f(x;,t=1)+p-h(x,,0)) ;
P =l
d) record the model:
L) =p, b (0);
e) update the current approximation:
A A~ ~ t A
fOun=fut=1)+f;(x) =2 f,(x)
i=0
3. Build the final model:
M A
S)=2 /().

i=0

In this work, gradient boosting is implemented over
the decision trees. This implementation of gradient boost-
ing allows you to build a model in the form of a weak
predictive models ensemble of decision trees.

In scikit-learn, the Gradient Boosting Regressor model
builds the model in stages, which allows you to optimize
arbitrary differentiable loss functions. At each stage, the
decision tree corresponds to the negative gradient of the
specified loss function. The main parameters in Gradient
Boosting Regressor that were selected to find the optimal
solution:

1) n_estimators — the number of steps to increase the
gradient (the number of weak decision trees used);

2) loss — loss function for optimization. (MSE,
MAE);

3) max_depth — maximum depth of each decision
tree;

4) max_features — the number of features by which
the split is searched;

5) min_samples_split — the minimum number of ob-
jects required to split the internal node of the tree;

6) min_samples_leaf — the minimum number of ob-
jects in the leaf.

Selection of optimal parameters for the model. The
GridSearchCV function, which is part of the scikit-learn
module, was used to select the optimal parameters in the
model. The GridSearchCV function implements an ex-
haustive search for the specified parameter values for the
model. This function implements the ,,selection” and ,,as-
sessment” methods.

Model parameters are optimized by cross — validation
over the parameter grid.

Main parameters of the GridSearchCV function:

1) estimator — the model in which the selection hap-
pens;

2) param_grid — sets of hyper-parameters that need to
be checked;

3) scoring — the metric that will be used for assess-
ment;

4) cv — the number of blocks in cross-validation.

Experimental research.

Experiment setup. The model was set up and trained
separately for each: e, and yyiqm, on a set of X parame-
ters. Training a model with optimal parameters on a full
dataset is designated as train_score. To check the accu-
racy of the model prediction (cv_score), the cross-
validation was used. To get an estimate by cross-
validation, the cross_val score function from the scikit-
learn module is used.

Table 1
Statistical indicators of the training data set

Indicator Iw IF VW FP Depth Width
Number 72 72 72 72 72 72
Sample mean 45.666 141.333 8.639 78.333 1.196 1.970
Mean square deviation 1.678 5.146 2.061 21.494 0.225 0.279
Minimum 43 131 4,5 50 0.80 1.68
25% 44 139 8 60 1.08 1.76
50 % 45 141 9 80 1.20 1.84
75 % 47 146 10 80 1.29 2.05
Maximum 49 150 12 125 1.76 2.60
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Table 2
The best results of selection of model parameters for the depth of the seam
n_estimators loss max max min samples leaf min samples mean_test_score
depth features split
100 MSE 3 2 1 5 0.050862
90 MSE 3 2 1 5 0.050887
80 MSE 3 3 1 5 0.050893
80 MSE 3 2 1 5 0.050893
80 MSE 3 4 1 4 0.050893
100 MSE 3 3 1 5 0.050896
90 MSE 3 3 1 2 0.050898
80 MSE 3 4 1 2 0.050899
80 MSE 3 4 1 3 0.050899
100 MSE 3 3 1 2 0.050900

The number of blocks in cross-validation is 4. To im-
prove the accuracy of the check, the algorithm is per-
formed:

Foreach i=1,...,K:

1. Randomly shuffle the dataset— DS..

2. Get the score using cross_val _score on DS;—S..

3. The final score is the average:

1 K
cv_scorey =— ) S,
— K K ; i
The number of X is selected in this way until:

cv_scorey —cv_scoreg  <0.1.

Selection of parameters for the Gradient Boosting
Regressor (GBR) model.

The model for the seam depth. Model hyper-
parameters were selected among the following values:

1. n_estimators: 10, 20, 30, 40, 50, 60, 70, 80, 90,
100,

loss: MSE, MAE;
max_depth: 1, 2, 3, 4;
max_features:1, 2, 3, 4;
min_samples_leaf: 1, 2, 3, 4;
. min_samples_split: 2, 3, 4, 5.

The search for optimal hyper-parameters was carried
out using GridSearchCV, where the average absolute er-
ror (MAE) was used as a metric for evaluating each test,
and the number of blocks in the cross-validation is 5.

The best ten results, in descending order, are shown in
tab. 2.

In tab. 2 the following notations are used:
mean_test_score — the average value of the test score.

When fixing the values (loss = MSE, max_depth = 3,
max_features = 2, min _samples leaf = 1,
min_samples_split = 5), n_estimators change graphs were
built (fig. 1).

When fixing values (n_estimators = 100, loss = MSE,
max_features = 2, min samples leaf = 1,
min_samples_split = 5), the max_depth change graphs
were built (fig. 2).

When fixing values (n_estimators = 100, loss = MSE,
max_depth = 3, max_features = 2, min_samples_leaf = 1),

s W
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the graphs of min_samples split were changes built
(fig. 3).

As shown in fig. 3, the best score on the test was
min_samples_split = 7.

Best hyper-parameters: n_estimators = 100, loss =
MSE, max depth = 3, max features = 2,
min samples leaf =1, min samples split=7.

The importance of technical parameters is distributed
as follows: x;, — 6 %; x;— 26 %; x,,, — 44 %; x4, — 24 %.

Tab. 3 presents the scores of the mathematical model
for the depth of the weld.

Table 3
The scores of a mathematical model for the depth
of the welding seam

Scores R2 MAE
train_score 0.932651 0.042958
CV_score 0.896255 0.044262

The search for optimal hyper-parameters was carried
out using GridSearchCV, where the metric is the MAE
used to assess each test, and the number of blocks in
cross-validation is 5.

The top ten results, in descending order, are shown in
tab. 4.

The following notations are used in tab. 4:
mean_test_score — the average value of the test score.

When fixing the values (loss = MSE, max_depth = 3,
max_features = 3, min_samples leaf = 1,
min_samples_split = 4), the n_estimators change graphs
were built (fig. 4).

When fixing values (n_estimators = 100, loss = MAE,
max_features = 3, min samples leaf = 1,
min_samples_split = 4), the max_depth change graphs
were built (fig. 5).

When fixing values (n_estimators = 100, loss = MAE,
max_depth = 3, max_features = 3, min_samples_leaf = 1),
the graphs of min_samples split changes were built

(fig. 6).
Best hyper-parameters: n_estimators = 100, loss =
MAE, max depth = 3, max features = 3,

min_samples_leaf =1, min_samples_split = 4.
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Table 4
The best results of selection of model parameters for the width of the seam
n_estimators loss max max min samples leaf min samples split mean_test_score
depth features
100 MAE 3 3 1 4 0.030108
80 MAE 3 3 1 4 0.030112
90 MAE 3 3 1 4 0.030166
70 MAE 3 3 1 4 0.030391
100 MAE 3 3 1 5 0.030459
80 MAE 3 3 1 5 0.030475
90 MAE 3 3 1 5 0.030509
80 MAE 3 3 1 3 0.030615
80 MAE 3 3 1 2 0.030615
60 MAE 3 3 1 4 0.030649
—— mean_test_score — mean_train_score
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The importance of technical parameters is distributed
as follows: x;,, — 13 %; x;r— 41 %; X,y — 33 %; x5 — 13 %.
Tab. 5 shows the results of evaluations.

Table 5
Model scores by the width of the weld
Scores R2 MAE
train_score 0.970136 0.030648
cV_score 0.960603 0.040242

Results. In this research the mathematical models
based on gradient boosting according to the training set
data (dataset) were considered.

The following best parameters of the mathematical
model are obtained:

1. For the seam depth: n_estimators = 100, loss = MSE,
max_depth = 3, max _features = 2, min_samples leaf =1,
min_samples_split="7.

2. For the seam width: n_estimators = 100, loss = MSE,
max_depth = 3, max_features = 3, min_samples_leaf =1,
min_samples_split = 4.

The scores of the finished models are shown in tab. 6.

Table 6
Model scores when testing cv_score
Model R2 MAE
Depth 0.896255 0.044262
Width 0.960603 0.040242

As can be seen from the scores of the mathematical
model based on gradient boosting, the proposed model is
able to solve the problem of supporting technological
decision-making based on gradient boosting with a fairly
low value of the average absolute error and a high value
of the coefficient of determination.

Conclusion. As a result of the research, the analysis
of the applicability of the Gradient Boosting Regressor
method as a basis for creating a mathematical model for

optimizing and forecasting the process of electron-beam
welding was performed. Based on the obtained model
scores we can judge the feasibility of using the proposed
approach to support technological decision-making in the
technological processes control that have similar statisti-
cal dependencies.

The obtained model allows us to support technological
decision-making in the process of electron-beam
welding of dissimilar materials with high accuracy. The
use of the technique will improve the quality of the elec-
tron-beam welding process control. The results of this
study are planned to be used in further research designed
to support decision-making in relation to other techno-
logical processes that have similar statistical dependen-
cies.
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