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In this research the issue of inertialess processes modeling is under study. The main modeling algorithm is the non-
parametric recovery algorithm of the regression function. The algorithm allows to build a process model under condi-
tions of low a priori information. This feature may be particularly important in modeling processes of large dimensions
prevailing in the space industry. One important feature of the algorithm for nonparametric estimation of the regression
function is that the accuracy of modeling using this algorithm highly depends on the quality of the observations sample.
Due to the fact that in processes with large dimensions of input and output variable vectors observation sampling
elements are in most cases unevenly distributed, the development of modifications to improve the quality of modeling
is relevant.

The modification of the nonparametric dual algorithm based on piecewise approximations has been developed.
According to the proposed modification, the process area is divided into sub-areas and a non-parametric estimate of
the regression function for each of these sub-areas is recovered. The proposed modification reduces the impact of some
observation sampling features, such as sparseness or voids in observation samples on the quality of the built model.

The computational experiments were carried out, during which a comparison was made between the classical algo-
rithm of non-parametric estimation of regression function and the developed modification. As the computational ex-
periments have shown, with uniform distribution of the sample elements of observations, the developed modification
does not lead to the improvement of the quality of modeling. With a substantial uneven distribution of the observations
sample elements, the developed modification resulted in a 2-fold improvement in the quality of the simulation. The re-
sults suggest that the proposed modification can be used to model complex technological processes, including those in
the space industry.

Keywords: identification, nonparametric estimation of the regression function, piecewise approximation.
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Paccmampusaemcs sonpoc mooenuposanus 6e3blHEPYUOHHBIX NPOYecco8. B kauecmee ocnosnozo anrzopumma mo-
0eNUPOBAHUSL UCTIOTLIYEMCSL AICOPUMM HERAPAMEMPULECKO20 80CCMAHOGIeHUsl QYHKYuu peepeccuu. Paccmampusae-
MBI an2OpUMM NO380Jiem HOCMPOUNb MOOENb MEXHOL02ULECKO20 NPOYECccad 8 YCI0BUAX MANOl anpuopHoll uH@opma-
yuu. dmo mooicem Obimb 6ANCHO NPU MOOEAUPOBAHUU NPOYECCO8 DOILULUX PAZMEPHOCTE, NPEGATUPYIOUUX 8 KOCMU-
yeckoti ompacau. OOHOU U3 6ANCHBIX OCOOEHHOCMEN ANCOPUMMA HENapaMempuieckoll OYeHKU (QYHKYuu pezpeccuu
ABNAEMCA MO, YMO MOYHOCb MOOEAUPOBAHUS C UCNONB30BAHUEM MO0 ANROPUMMA CUNLHO 3ABUCUN OM KAYeCmed
6blOOPKU HAOTIOOeHUll. B ces13u ¢ mem, umo 6 npoyeccax ¢ OONbUOU PA3MEPHOCHIBIO GEKMOPO8 BXOOHBIX U 8bIXOOHbIX
NEPEMEHHBIX dNeMeHmbl 8blOOPKU HAOMOOeHUl 8 OONBUUHCMEE CIYYaed PACpedeseHbl HEPAGHOMEPHO, pas3pabomKa
MOOUPUKAYULL, NO3COTIOUUX YIIYHULUIND KAYECTNBO MOOCTUPOBANUS, SGISLEMCSL AKNYAIbHO.

Paspabomana mooupuxayus arzopumma Henapamempuyecko2o OVaibHO20 HA OCHOBAHUU KYCOYHO-3A0AHHBIX aNNpPOK-
cumayuil. Co2nacHo npeonodiceHHol Moougukayuy, odracms Cywecmeo8anus npoyecca pasoeisiemcs: Ha nooooiacmu
U MPOU3BOOUMCSI BOCCMAHOGIEHUE HENAPAMEMPULECKOU OYEHKU DYHKYUU pecpeccu Osi KANCOOU U3 dmux nooooia-
cmeti. Tlpeonooicennas moougpuxayus no3eoasem yMeHbWUms GIuUsHUe HEKOMOopblX ocobenHocmeti 6b100pKu Hab.I00e-
HUSL, MAKUX KaK paspesicéHHOCmuU Uiy nycmomsl 8 8blOOPKAX HAOIIOOEHULl, HA KAYecmeo NOCMPOEHHOU MOOEU.
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B xo00e sviuucnumenvHvlx dKCHEPUMEHINO8 NPOBOOUNOCL CPABHEHUE MeNHCOY KIACCUYECKUM ANeOpUMMOM Henapa-
Mempudeckoli oyenku QyHKyuu pespeccuu u paspabomannoi moouguxayueil. Kax nokazanu sblvuciumenvusle IKcne-
puMeHmbl, NpU PABHOMEPHOM pACHpedeNeHUuU 31eMeHmOo8 6blOOPKU HADII00eHUll paspabomanHas MoOu@uUKayusl
He npugooum K YIyYuleHuio Kauyecmea moodeauposanus. Ilpu cyuwjecmeenHou HepagHOMEpHOCU PAChpeoeieHus ie-
MEeHMOo8 8blOOPKU HAONI00eHUll, pa3spabdOmMaHHas MOOUDUKAYUS NPUEOOUNA K YIVHUEHUIO Kauecmed MOOeiuposanus
6 06a pasa. [lonyuennvie pe3yrbmamul NO380AAIOM YIMEEPHCOAMb, YNMO NPEOOHCEHHA MOOUPUKAYUA Modxcem Obimb
UCNOTL308AHA OIA MOOEAUPOBAHUS CTIONCHBIX MEXHOIOSUYECKUX NPOYECCO8, 8 MOM YUCTe U OISl NPOYECCO8, UMEIOUUX

Mecmo 8 KOCMUYECKOl ompaciuiu.

Kniouegvie cnosa: uoenmughuxayus, nenapamempuyeckas oyeHka QyHKYuu peepeccuu, KyCouHasi annpoKcumMayusl.

Introduction. The article studies the problem of iner-
tialess technological processes identification.

The scheme of the simulated process is shown in the
fig. 1 [1].

The following notations are used in fig. 1: #(¢) — in-

put variables vector; X(f) — output variables vector;

E(t) — interference effect; O — process.

The main modeling algorithm is the nonparametric
regression function recovery algorithm [2-5], and
piecewise-defined approximations [6—8].

When getting a sample of observations, not only the
sample of observations size is important, but also its
quality. The quality of a sample of observations is the
accuracy of parameters readout, the presence of outliers
in it, the uniformity of the distribution of the sample of
observations, etc.

Special attention is paid to the problem of modeling
the process with an uneven distribution of the sample of
observations [9—11].

In some tasks, a sample of observations can be
distributed over an area where the process Q(i,x) occurs
with sparseness, voids, or concentration of the sample of

observations elements. As an example, fig. 2 shows an
unevenly distributed sample of observations.

In fig. 2, the area / contains the so-called sparseness
in the observation samples, number 2 denotes voids in
space Q(if,x) , and number 3 denotes the elements of the

observation sample.

E(®)

O

Fig. 1. The simulated process
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Puc. 1. Mopenupyemslii nporecc

For nonparametric estimation of the regression
function, the quality of the sample of observations is of
particular importance. With an uneven distribution of the
observations sample there arises the difficulty in setting
up the blur parameters ¢ vector, as some areas are sparse
and it is assumed that in such cases ¢, should be large, and
in some areas there is concentration and it is assumed
that for these cases ¢, should get a small value. Undoubt-
edly, all this also affects the quality of the resulting
model.

uyt N e .
LA
....l e, "ees o .
2 ....I ..-.....:- 5.. .
\ et
o % « v ..l » .
LI « * e . . >

Fig. 2. Uneven sample of observations

Puc. 2. HepaBHOMEpHO pactipeneneHHast BEIOOpKa HaOIIoneHnit
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Fig. 3. Determination of blur parameter

Puc. 3. Onpenenenue napameTpa pa3MbITOCTH

The process of building a mathematical model of the
technological process shown in fig. 1 can be divided into
several consecutive stages:

1) getting a priori information about the process;

2) getting a sample of observations;

3) choosing a metod of building a mathematical
model;

4) building a mathematical model.

The article focuses on the stage of choosing a method
for constructing a mathematical model.

Nonparametric recovery of the regression function.
“Parametric approach” implies that the structure of the
process or object under study is known, but the parame-
ters of this structure are not known.

The type of algorithm used depends on the level of a
priori information. If a priori information is sufficient to
select the object structure, then parametric algorithms can
be used.

Nonparametric identification is generally implemented
using a nonparametric estimation of the regression func-

tion.
o)

=l j=1
( Usj ~Uji j
CS

x () =——
2I1e
=1 j=l1

In (1) the following notations are used: ®(*) — is a
bell-shaped smoothing function; ¢; — is the blur parame-
ter.

The quality of the built model directly depends on the
chosen blur parameter ¢;". This coefficient determines the
degree of participation of the sample elements in the cal-
culation of x, at the u, point.

Q)

As shown in fig. 3, only those variables that have [u —
u,| < ¢, participate in building the model at the u, point,
and the closer |u — u,| is to zero, the more influence this
point has on the results of calculations.

In nonparametric estimation of the regression func-
tion, the quality of the sample of observations is of par-
ticular importance. Of course, for any model, the quality
of the sample of observations also affects the accuracy of
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the constructed model, but in the case of nonparametric
estimation of the regression function, this is of particular
importance.

Piecewise-defined approximation One of the options
for building a mathematical model of the process the
ideas of which will be further used is a piecewise-defined
approximation.

The idea of a piecewise-defined approximation is to

divide the Omega area into some sub-areas Q,(ii),i = I,_m
(fig. 4), and to build for each area (i) its own

mathematical model of the process.

One of the most well-known piecewise-defined
approximations are spline functions. The advantage of
this approach is that unevenness of the sample of
observations does not have a big impact on the quality of
the model. The weak side of spline functions is that it is
quite difficult to select a function and set parameters for
each area Q; (i) for the tasks of large dimensions.

The developed modification of the nonparametric
estimation of the regression function. The complexity
of nonparametric estimation of the regression function, in
contrast to spline functions, increases much more slowly.
In this regard, it seems logical to combine the idea of a
piecewise-defined approximation and a nonparametric
estimation of the regression function.

The following modification of the nonparametric
estimation of the regression function has been developed:

The stage of building the model:

1) omega area is divided into sub-areas €3; (i) ;

2) for each area ), (i), the regression function is re-
covered using a nonparametric estimation of the regres-
sion function;

3) the blur vector is being set for each area €, (i)
[12].

The stage of making a forecast at point

1) the area Q,(if) to which the point
defined;

2) the regression function is recovered using the set
vector of blur parameters for the area Q, (i) .

NN
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Sub-areas €);(if) can be split by various methods. It is

possible to apply the algorithms for splitting samples into
classes, or choose the classic way for splines and split the
entire area of input variables definition into equal parts
and set the vector of blur parameters for each of them.

Computational experiments. The numerical
experiments were performed comparing the classical
nonparametric estimation of the regression function with
the proposed modification. Numerical experiments were
performed for several cases that differ in the uneven
distribution of the components of the observation
samples.

First of all, an experiment was conducted to model an
object described by the following equation:

f@w)= f(ul9u2:u3:u4:u55u6) =
= 6sin(u; )+ 2uy +uy / 6+ 4cos(uy ) +us —8ug.

2)

It should be noted that the algorithm for the regression
function recovery does not identify the type of equation.
The equation is only used for generating a sample of
observations.

The following initial data were taken for the
experiment: the size of the sample of observations
s = 4000; the amount of interference affecting the object

E=4%; iue(0;3); the elements of the sample of
observations are distributed evenly.

The model will be constructed using an algorithm for
nonparametric estimation of the regression function and
using the proposed modification of the algorithm.

The simulation results are shown in tab. 1

According to the results of the experiment, the average
forecast error in the modified algorithm slightly
decreased, as well as the time for setting the blur
parameters and the speed of making the forecast
increased.

This experiment showed that if the sample of
observations is uniformly distributed, it is not necessary
to divide the elements of the sample of observations into
classes. Here we would like to note that the considered
case is quite rare in practice. The sample almost always
has concentration or sparseness.

In the next numerical experiment, the sample of
observations will have sparseness and concentration of
the elements of the sample of observations.

The results of object modeling under these conditions
are summarized in tab. 2.

Q,@),i=1m

Q)

~

>

v

.

Fig. 4. Split of Q,(u) into sub-areas Q, (if)

Puc. 4. Pazbuenne Q, (i) Ha nogobnactu Q,

()

Table 1

The results of the regression function recovery

Nonparametric algorithm
for the regression function recovery

Modified nonparametric algorithm
for the regression function recovery

Average forecast error, % 3 4
Blur paramerers setting time, ms 30 70
Forecasting speed, ms 45 69

Table 2

The results of the regression function recovery

Nonparametric algorithm
for the regression function recovery

Modified nonparametric algorithm
for the regression function recovery

Average forecast error, % 14 7
Blur paramerers setting time, ms 35 70
Forecasting speed, ms 52 84
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Table 3

The results of the regression function recovery

Nonparametric algorithm
for the regression function recovery

Modified nonparametric algorithm
for the regression function recovery

Average forecast error, % 23 8
Blur paramerers setting time, ms 36 69
Forecasting speed, ms 49 78

According to the experiment, the difference between
the average simulation error of the classical algorithm for
nonparametric estimation of the regression function and
the proposed modification is higher than in the
experiment shown in tab. 1. Based on this, we can
conclude that when heterogeneity appears in the sample
of observations, the proposed modification allows us to
estimate the regression function more accurately.

To confirm this assumption, another experiment was
conducted, which introduced an even greater
heterogeneity in the observation sample than in the
experiment shown in tab. 2.

The results of this experiment are summarized in tab. 3.

As can be concluded from tab. 3, when the uneven
distribution of the sample of observations elements
increases, the accuracy of the proposed modification
becomes higher than the accuracy of the classical
algorithm.

It is important to note that unevenness in the sample of
observations is ubiquitous when modeling objects with
large input-output dimensions.

Conclusion. The modification of the algorithm for
nonparametric recovery of the regression function has
been developed. The modification consists in using the
idea of piecewise-defined approximations and splitting
the modeling area into sub-areas, for each of them the
regression function is separately recovered .

During the computational experiments, it was
demonstrated that the proposed modification significantly
improves the quality of modeling the process when the
elements of the sample of observations are distributed
unevenly, there are sparseness and voids in the sample of
observations. It is important to note that there are other
methods for dealing with an unevenly distributed sample
of observations [13-15].
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