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The purpose of this work is to create an effective routing algorithm on the Cayley graphs of permutation groups, su-
perior in its characteristics to an algorithm using an automatic group structure.

In the first section of the article we describe the auxiliary algorithm A—1 which allows numbering elements of a
given permutation group.

In the second section we present the algorithm A-2 for calculating the routing table on the Cayley graph and algo-
rithm A-3 for determination the optimal route between two arbitrary vertices of the graph. Estimates of time and space
complexity are also obtained for these algorithms.

In the third section we describe the algorithm A—4 for calculation the minimal word of a group element. It is proved
that the computational complexity of the algorithm will be proportional to the length of the input word.

The fourth section presents the results of computer experiments for some groups of permutation groups, which com-
pare the time for calculating the minimum words using algorithm A — 4 and an algorithm based on the construction of
an automatic group structure. It is shown that A — 4 is much faster than its competitor.
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Lenvio nacmosuyeti pabomvl s6151emMcsi CO30anue IPHEKMuUsH020 aneopumma mapupymuzayuu Ha epagax Kau
2PYnn NOOCMAHOBOK, NPeBOCX00Se20 NO CEOUM XAPAKMEPUCMUKAM AN2OPUMM, UCHOLbIVIOWUL AGMOMAUYECKYIO
CMPYKmMypy epynnul.

B nepsom pazoene cmamvu onucan cnomozamenvuuiii ancopumm A—I, Komopulil n038osem HyMeposams deMeH-
Mbl 3a0AHHOLL 2PYNNbl HOOCMAHOBOK.

Bo emopom paszoene npedcmasnen ancopumm A—2 ons eviuucienus mabauyvl mapuwpymuzayuu Ha epage Konu u
aneopumm A—3, Komopwill n0380a5eM ONpedenuns ONMUMALLHBIIL MAPUPYI MeNCOY O8YMS RPOUBOTbHBIMU 6EPULUHA-
Mu epagha. Jnst OaHHBIX AN2OPUMMO8 MAKICE NOTYYEHbL OYECHKU BPEMEHHOU U NPOCMPAHCMEEHHOU CLOJNCHOCTU.

B mpemvem pazoene onucan ancopumm A—4, npu nomougu KOMoOpPo2o0 MOICHO BLIYUCIUNMb MUHUMATBHOE CJLOBO 3jle-
MeHma epynnol. JJoKa3aHo, 4mo GblYUCIUMENbHASL CONCHOCIb A20pumma 6yoem nponopyuoOHaIbHA OTUHE 8X00AUe20
cnosa.

B uemsepmom pazoene npueedenvt pe3yibmamsl KOMNbIOMEPHBIX IKCHEPUMEHMOS OJisl HEKOMOPBIX 2PYNI NOOCMA-
HOBOK, 8 KOMOPbIX CPAGHUBACMCSL BPEMSL GbIMUCTICHUSL MUHUMATIbHbIX CTI08 NO al2opummy A—4 u aneopummy, 0CHOGAH-
HOMY HA NOCMPOEHUU A8momMamuieckol epynnosou cmpykmypol. Toxazano, umo A—4 snauumenvro dvicmpee c80€20
KOHKYpeHma.

Kniouegvie cnosa: epagh Kanu, epynna noocmanogok.
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Introduction. Currently, the increasing demand for
cloud computing is leading to the growth of large-scale
data centers (DPCs).

Modern data centers contain hundreds of thousands of
nodes interconnected by a network. The topology of such
a network, i.e. the method of connecting nodes is a key
link on which speed, fault-tolerance, reliability and other
characteristics of the data center depend.

For this reason, network design is a very important
task, including the search for graph models that have good
topological properties and allow the use of efficient rout-
ing algorithms.

These are the qualities of Cayley graphs, which have
such attractive topological properties as high symmetry,
hierarchical structure, recursive construction, high con-
nectivity, and fault-tolerance [1]. The definition of a
Cayley graph implies that the vertices of the graph are
elements of some algebraic group. The choice of the
group and its generating elements allows us to obtain a
graph [2] that meets the necessary requirements for di-
ameter, degree of vertices, number of nodes, etc.

Suppose G :=(X) is a finite group, generated by an

ordered set X :={x; < x, <...<x,}, which is also called
the alphabet. The set of all words (strings) over the alpha-
bet X will be denoted by X". Let w:=xx,...x; be a
word over X and |w]|:=/ is its length. On the set X" we

also define the relation of order. Suppose v and w are two
arbitrary words in the alphabet X. Then v<w, if
|v|<]w|, a and in case of equal word lengths, the smaller

word will be determined according to the introduced lexi-
cographic order on generators. If it is necessary to empha-

size that the string ve X * matches the element geq,

then we write v, . The string v will be called the minimal

word of the element g , if for all others we X", such that

v, =w,, will be conducted v<w. It’s obvious that

¢ = V>
every g € G, then we will write v,. It is evident that every
g € G matches the unique minimal word. The length of

an element of a group g is the length of its minimal word
v, that is | g [:= min{| v, [:v, € X"} . It has been noted that

in the general case, the task of determining the minimal
word is NP-hard [3].

Cayley graph I' := Cay(G,X) of group G with rela-
tion to X is called a directed unweighted labeled graph
with many vertices V'(I'):={g|g e G} and many edges
E():={(g,gx)Ixe X,g € G} . Suppose (g,gx) € E(I),
then generator If
X=XuUX"", then graph T will be non-oriented. We
assume that the unit element e ¢ X , that is in graph T’
there are no loops. As it is known [4], the shortest
distance between two arbitrary vertices of the graph g
and 4, which we denote d(g,%), is equal to the length

x is called an edge token.

of the minimum word of the element g’lh, i e.

d(g,h):= g 'h|.
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Let us dwell on the currently known routing algo-
rithms on Cayley graphs. Traditional methods, such as
Dijkstra or Bellman-Ford algorithms, can be used on
graphs of any kind, but require significant spatial and
temporal resources [5]. For some families of Cayley
graphs, there are special routing algorithms that, unlike
traditional methods, use the topological characteristics of
the graph, while reducing time and/or spatial complexity.
These include graph families such as hypercube [6], but-
terfly [7] and star graph [8], which are Cayley graphs. In
work [9], a routing algorithm for creped and star graphs
based on sorting permutations is presented. However, this
approach does not provide the shortest routing. K. Teng
and B. Arden prove [10] that all finite Cayley graphs can
be represented by generalized chordal rings, and then of-
fer an iterative routing algorithm based on the lookup
table. The space complexity of such an algorithm
is O|G |2) , and temporary is O(D) , where |G| and D are
size and diameter of the network, respectively. To find
the shortest paths on the Borel graph L. Wang and K.
Tang offer an algorithm [11], which first calculates in an
autonomous mode the routing table from one node to all
the others; then, using the transitive property of the
Cayley graph, creates a routing table for all nodes.
The computational complexity of this algorithm is limited
O(log, |G|), and space complexity is O(D-|G[*). In
[12] a distributed fault tolerant routing algorithm on a
Borel graph is presented. This two-phase algorithm uses
two types of routing tables: static and dynamic.

In the article [13], a routing algorithm for a special
class of Cayley graphs used as the topology of a wireless
data center network is presented. This algorithm is two-
level: for sending messages between servers in the same
rack and servers in different racks. Each server is identi-
fied by three values: the coordinates of the rack, the tier
on which the server is located, and its number on the tier.
In addition, each server uses three routing tables to for-
ward packets from the source to the destination along the
shortest route.

The monograph [14] is a fundamental work on the re-
lationship of algebraic groups and finite state automaton.
In this case, the automaton structure of a special kind is
determined on the group G =(X), using which it is pos-
sible to calculate the minimal word for any element of the
group.

According to [14], the group finite state machine reads

an arbitrary word w, € X 5, processes it and produces the
minimal word of the element g. Herewith the time T,
of word processing w will be proportional to the square of
its length, i. e. T, = O( w[*).

Using this result, an algorithm for finding the shortest
path on a Cayley graph (denoted by A — 0) was proposed
in work [15], while its computational complexity is lim-
ited, and space complexity M,=0(X|-|G|+|A)),
where | A | is the number of states of a group automaton.

It should be noted that all the above routing algo-
rithms can be assigned to one of the following categories:
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a) those that are designed for specific Cayley graphs;
b) universal with high space and time complexity and
c) with low complexity, which do not provide shortest
paths.

The purpose of this work is to create an effective rout-
ing algorithm on Cayley graphs of permutation groups
that surpasses in its characteristics the algorithm
from [15].

The first section of the article describes the auxiliary
algorithm A — 1, which allows you to number the ele-
ments of a given permutation group.

The second section presents the algorithm A — 2 for
calculating the routing table on the Cayley graph. Algo-
rithm A — 3 is described below, it allows to determine the
optimal route between two arbitrary vertices of the graph.
Estimates of time and space complexity are also obtained
for these algorithms.

The third section describes the algorithm A — 4, with
which you can calculate the minimum word of an element
of the group. It is proved that the computational complex-
ity of the algorithm will be proportional to the length of
the incoming word.

The fourth section presents the results of computer
experiments for some groups of permutations, which
compare the time needed to calculate the minimal words
using algorithm A — 4 and the procedure from [15].

In conclusion, the prospects for the development of
the project are considered.

1. Algorithms on Cayley graphs of permutation
groups. Suppose G is finite group of permutations on the

set of points Q={1,2,...,n}. We denote o = g[a]
element image o € Q) under the influence g e G . Orbit
point a € Q is called set af = {aflgeG}.

the
G, ={geGla® =a}. For given B,,B,,....B, €Q we

Point stabilizer aeQ we will call set

inductively define

G gy, = (Cpop,.pdp, =
— {geGIBS =B, j=0,,...i}.

Sequence of different elements B :=(B,B,,...,B,,)
we will call the base of the group G, if Gy g o =e.

Thus, only a single element of the group leaves all the

points of the base stationary.
Suppose G = Gy p,...p,, - Next, we determine the

i

chain of stabilizers
G=GV>G?>...>G"™ >G"D ¢

If GV s its own subgroup G for ie[l,m], then
the base B is called irreducible.

Adjacent group classes G by subgroup GV have
a one-to-one correspondence with the elements of the
orbit AV =B If apeG? and GVa=GTp,
then for some ke G will be conducted a=hb.
Therefore, B¢ =B/ =p’.
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The above fact makes it possible to calculate a family
of representatives of cosets (transversal) U @ groups
G mod GV, every yeA® define
u,(y) e G, which displays B,

1

For we
in y, other words
B —y . In the particular case if B, =P, then
u;(B;)=e.

According to the notation introduced, we obtain an
ordered sequence U = (w;(y)lye ADY . It's obvious

that |U® |5 AD |.

Putting together all U D we get a transversal:

U= LmJU(").
i=1

By the Lagrange theorem |G |=|G" :G? |-|G? |=
=UY|-1G?|. Similarly, |G? 5 G?:G®|.|¢Y |=
=UP|-|GP|. Continuing this process, we get
(GHUD U |- U™,

Suppose B =(B,,B,,....B,,) is the base G, then for
any element of the group we can determine its base image

BE = (BE B B

Lemma 1. For Vg € G base image B® has a unique
view.

Proof. Suppose BS = B", then B —p. Therefore,
according to the definition of the base, gh™' =e. Conse-
quently, g=nh.

Lemma 2. Any element g € G can be unambiguously

written in canonical form

8= (um sUp_15-- .,1/[1) =SUplpyy - Uy

where
(1)

Proof. As g € G, then it is contained in some coset of

u, eUD uiell,m].

the group G by group, th G erefore, we write it in the
form g = hyu,, where h, € G and u, e UV . Similarly,
hy = hyu, , where h, € G and u, eUP .

Continuing this process, we obtain the desired for-
mula.

In the future, we will also need many inverse elements
of the transversal

m
o= Joo,
i=1

rne U9 = (u{l(y) lyeA®)
To find items in U and U® we need an auxiliary

array of indices A4 whose elements are defined as

mxn >

follows:
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a; €[0,|JUY [-1] -
A., =

ij the element number of , (/) in U, ifj e AD;

—1ifj e AD.

Below is an algorithm that received a word at the in-
put consisting of a product of elements g,g,...g; of the

group G, its base B, the transversal U and its inverse U ,
as well as an auxiliary array A4, returns canonical represen-

tation u,,u,,_; ...u; of this product.

m“m-1*

Algorithm A-1. u u

it - U =Fact0r(g1g2...g,,U,lA/,A,B)
Input: g,g,...g;, U,A and B

Output: u,,u,_; ...y

1. h=B
2.Foralli=12,...,/

3. he=(hE K5, . hE)
4. Forall i=1,2,....m

S. j=h[i]

6. u; = U([)[al]-]

7. u;l = l}(i)[aij]

8. hi= (' BB
9. Return u,u,,_;...u

Suppose T; =O(f) and M, =O(f) is upper asymp-
totic estimates of the computational and space complexity
of the i algorithm, respectively.

Lemma 3. Algorithm A-1 is correct and
T, =0(-m+m”).

Proof. The correctness of the algorithm follows from
Lemmas 1 and 2. First we get the base image of the ele-

ment g :=g,g,...g;, and then at each i €[l,m] stabilize

-1 -1
the point B; € B. As a result, we get B " =B,

Consequently, g=u,u,_,...u;.

To assess the computational complexity, we note that
the number of operations in a cycle of 2-3 is limited
o(l-m), 4-8 o(m?).
T, =0(-m+m*).

Decomposition (1) makes it possible to effectively
number all g e G, using the method of listing tuple ele-
ments in a mixed number system [16]. Suppose

¢ =(¢,,Cp_t»---»C;) 1s the basis of a mixed base notation

in which ¢;:=1 and ¢; = ¢, ;-|[U"™" | for i>2.

and cycle Therefore,

Suppose g =u,u, ;...
mapping

a; €[0,] U | —1] is a number of the element u; in U,

u;. We define a bijective

N, ...up <> (ay,,....q), where
We note that the vector (a,,...,a;) is a number
N(g)e[0,]G|-1] in the scale of notation with mixed

base (c,,,....c;) .
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Suppose k= N'(g) is the element number g .

Lemma 4. Computational complexity N (g)
N7(k) does not exceed O(m).

u

Proof. Suppose g =u,u,_;...u; and @, is number

m—1-

u, in UY Then k=N(g)=a,c,
In backward case g= N ~'(k)

factors u; are calculated as follows:
1.Forall i=1,2,....m
2.a;:=k mod| U |

3. k= Lk/w“) |J

.. +a.

=u,u

1 --- U , Where

4. u; =U"[a,].

Obviously, the number of operations in these proce-
dures does not exceed O(m).

Comment 1. For definiteness, we assume that all se-
quences U start with a unity element e. In this case
N(e)=0.

For numbering the elements of a group, we need to
know its base B and the complete family of representa-
tives of adjacent classes U. To calculate them, we will
use the well-known Schreyer — Sims algorithm proposed
by C. Sims in 1970 [17]. Currently, there is a variety
of its modifications [18]. The most efficient versions
of the algorithm have low computational complexity
and are implemented in computer algebra systems such
as GAP, Magma, and Mathematica, as well as in the
SymPy library for Python.

2. Cayley graph routing algorithms. To find the
shortest paths on Cayley's graph Cay(G,X) we need a

routing table P, , which is also called the parent tree

[19]. The following is an algorithm that, having received
at the input a generating set of a group X , its base B, the

transversal U and its inverse U, as well as a backing
array A, returns the specified table.
Hereinafter, we will be interested
| X |«| G| and n<| G|.
Algorithm A-2. P = BFS(X,U,U4, B)
Input: X, U, U,Aand B
Output: Routing table
Cay(G,X)
. PZ><\G| = [oo
k= N(e):=0
. P[1[k]=-1
P2)[k]=-1
- Q={k}
.Until Q= J
pop ¢ € O from the queue
For all xe X
s == Factor( N "' (q)x,U,U, 4, B)
k= N(s)

in the case

P on Cayley's graph

—_—

]

0 %N L kW

10.
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11.  If Pllj[k]=o0

12. add & to the queue Q

13. Pl1][k]=¢q

14. P2][k]=x

15. Return P

Theorem 1. Algorithm A-2 is correct and

T,=0(m*| X|-|G)).

Proof. This algorithm is a classical method in breadth-
first search on a graph [19]. In this case, the vertex with
the unit element number e (according to comment 1, we
have N (e):=0) will be the root of the parent tree P.
Suppose gx="h, where N(g)=k and N (h)=1, then
P[1[11:=k, P[2][l]=x. That means the vertex k is the
parent of the vertex / and x is edge tokens (k,/) .

We need to check altogether | X |-| G| of elements.
The verification time for each element according to
Lemmas 3 and 4 is limited O(m?®). Accordingly,
T, =00 X|-|G)).

The following algorithm using the routing table P cal-
culates the shortest route w:=xx,...x, between vertexes
a,be Cay(G,X), where x; € X . It's obvious that s <D,
where D is diameter of the graph.

Algorithm A-3. w = Route(a,b,U,UA, B, P)

Input: a, b, U, U,A, Band P

Output: w:=xx,...x, the shortest route from the
vertex a to the vertex b

1. w:=[] — empty word

2. g, =N"a)

3. g, =N"(b)

4.g:= Factor(gl’lg2 ,U,U,A,B)

5. k=N(g)

6.l =k

7. Until P[1][k]#= -1

8. k:=P[][/]

9. w:=P[2][l[]® W - string concatenation
10. 1=k

11. Return w
Theorem 2.  Algorithm  A-3 s

T, = O(m* + D) and My =O(m-n+|G|).
Proof. Cayley's shortest route from the vertex a to the
vertex b will be a minimal word w:=xx,...x, of the

correct,

element g =g, 'g,, where g, =N "'(a), g, = N"'(b)
and x; € X [4]. Suppose k is an element vertex number
g . Moving through the parent tree P from the vertex &
to its root, we will get the desired route.

Items 1-6 are limited in time O(mz), and cycle 7-10

is O(D) . As aresult, we get T; = O(m*> + D).

Space complexity of variables U , U , A4, and B is lim-
ited O(m-n), tables P — O(G]|). So,
M;=0(m-n+|GJ).

and

Comment 2. In many applied problems in the study of
Cayley's graph T = Cay(G,X) the order of the generat-
ing group G significantly exceeds its degree, i. e.
m<n<|G|. In this case M;=0(G|).

Example. Let us consider the group G =(X), gener-
ated by two cycles x=(1,5,4) and y =(3,4). Let us cal-
culate in GAP a base of G and a transversal:

B = (1’ 3’ 4)’

U =(e,(1,4)3,5),(1,5)(3,4),(1,3)(4,5)),
AV =(1,4,5,3),

U(z) = (e, (3, 49 5)3 (39 59 4))9 A(z) = (3’ 4’ 5)’

U =(e,(4,9), A% = (4,5).
Using Algorithm 2, we get the Cayley graph
I' = Cay(G, X) and its parent tree P (fig.1).
To illustrate Algorithm 3, we find the distance from
the vertex a:=15 to h:=22.
g =N"(@)=u2nu? s,

2, =N =UPMu?21uV2],

g = Factor(g;'g,) =U®[0jUP[21U"[0],
k=MN(g)=8.

Moving along the parent tree P from the vertex with
the number to its root, we get

y X x v x
8>20>17—>14—-6->0.
Consequently, w = xyxx) . On the graph I', the route
will have the following form:

X y X X y
15—-519—>1-54—->10>22.

3. Problem of a minimal word. A small modification
of algorithm A — 3 allows us to calculate the minimal
word w from an arbitrary string v:=xx,...x, in the al-

phabet of generators X.
Algorithm A—4. w = MinimalWord(v,U, UA, B, P)
Input: v, U, U,A, BuP
Output: W= XX, ...X — the minimal word
1. w=[] — the empty word
2. g:= Factor(v,U,U, A, B)
3. k=N(g)
4. 1=k
5. Until P[1][k]#-1
6. k=P1]/]
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7.  w:=P[2][[]®w — string concatenation

8. =k

9. Return w

Theorem 3. 7, =O(|v|) and M, =O(m-n+|G|).

Proof. According to Lemmas 3 and 4, the execution
time of items 14 is limited O(|v| m+m?). Paragraphs

5-9 of the algorithm represent an upward movement
in the parent tree P, therefore, the complexity of this sec-

tion does mnot exceed O(D). So we get,
T, =0(v] .m+m?>+D). If the word is long, then
T, =0(v].

Space complexity of variables U, U , A and B is lim-
ited O(m-n), and tables P - O(G|). So,

M,=0(m-n+|G|).
4. Comparative analysis of algorithms. The follow-

ing table provides estimates of the time and space com-
plexity of algorithms A — 0 and A — 4.

Algorithm T, M,
A0 o(vP) O(X[-1GI+[AD
A4

o(vD O(m-n+|G|)

The table shows that the algorithm A — 4 has lower
computational complexity in comparison with the algo-
rithm A — 0.

As for space complexity, according to comment 2, for
many interesting topologies M, ~ M, ~| G| will be con-
ducted.

Al
. _¥ AN
7 ~73) (1218
4 s \/‘ P kN

¥ N { ( 2
13 (17 ) 4 ) Pt

> TN V4
N - ‘*‘"'20""" ~(s) |

| (e —(0]] [ BF—
A Py N
Y/ SRV Vap N e 5

o (14 L1)

16\\ A TN A
A ; " \\" N ¥
YN 6) 19 =15
| 0 A < 7 P

' \ A
Tom 23]

A — 4 was implemented by the authors in C ++; in
turn, A — 0 was written in C and is a part of the freely
distributed KBMAG package. In order to ensure the pu-
rity of the experiment, these algorithms were broadcast by
the GCC compiler with the same parameters. At the initial
stage, two groups were tested.

a) symmetrical group Sy =(Y),
Y={@Gi+Dlie[l,8]}. Caley graph Cay(S,,Y)is also
called a bubble sort graph. It is well known that S, =n!,

n(n—1)
S

where

m=n-1 and Dy(S,) =

0) Matthew's sporadic simple group M,, =(X),
where X = {x,,x,,x,'} and

x; =(1,13)(2,8)(3,16)(4,12)(6,22)(7,17)(9,10)(11,14) ;

x, =(1,22,3,21)(2,18,4,13)(5,12)(6,11,7,15)
(8,14,20,10)(17,19) ’

Therein | M, |= 443520, m=5 and Dy (M,,)=34.

Fig. 2 shows graphs of time dependence 7,(/) execu-
tion of algorithm A — 4 for groups S, =(¥Y) and
M,, =(X) depending on the length of the incoming
word.

Fig. 3 shows graphs of the dependence of time T; (/)
and 7, (/) on the length of the input word for the specified

groups.
These graphs clearly show that algorithm A — 4 is
much faster than A — 0.

Fig. 1. The Cayley graph I" = Cay(G, X) and its parent tree.
The edges of the graph I" with the label x are represented as a straight line
and y as an arc

Puc. 1. I'pa Konu I' = Cay(G, X) u ero poautensckoe nepeso P.

Pe6pa rpada I' ¢ MeTKoit x mpeAcTaBiIeHbI B BU/E IPSIMO JIMHUH,
ay B popme ayru
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Fig. 2. Graphs of T, () for Sy =(Y) and M,, =(X)
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Fig. 3. Graphs of T; (/) (dotted line) and T, (/) for groups Sy =(Y) and M,, =(X)

Puc. 3. I'paduxu T;) (/) (mynxrup) u T,(/) marpymn Sy =(Y) 1 M,, =(X)

Conclusion. The algorithms presented in this paper
will serve as a starting point for creating new resource-
efficient routing algorithms. Two directions can be distin-
guished. Firstly, it is the creation of algorithms that take
into account the network topology. In this case, algo-
rithms will be designed for specific classes of Cayley
graphs. Secondly, it is the development of hybrid algo-
rithms that include both static and dynamic routing tables.
This will allow to calculate the optimal routes depending
on the current state of the network.
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