UDK 544.18
THEORETICAL STUDY OF LITHIUM ATOMS PENETRATION INTO SILICON
N. S. Mikhaleva [1]*, A. A. Kuzubov [1], Z. I. Popov [2], A. D. Eremina [1], M. A. Visotin [1]
[1] Siberian Federal University, Institute of Nonferrous Metals and Materials 95, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660025, Russian Federation [2] L. V. Kirensky Institute of Physics SB RAS 50, Akademgorodok Str., Krasnoyarsk, 660036, Russian Federation *E-mail: natasha.eliseeva90@gmail.com
The article deals with a theoretical investigation of lithium diffusion through silicon (001) surface within density functional theory formalism. It was shown that it is more energetically favorable for dilute lithium atoms to stay atop fully-relaxed silicon (001) surface than beneath it. This fact hampers the diffusion into the silicon crystal and the situation doesn't change significantly with increase in temperature. The frequencies of lithium atom hopping from the surface to the subsurface layers of silicon crystal were estimated. The analysis of frequencies for different transition paths indicates that in the case of dilute concentration Li atoms are likely to migrate through the surface from one type of sites (site L-located in channels between silicon dimers). With increasing of lithium concentration up to 1 monolayer and further, the silicon (001) surface swaps the asymmetric dimers reconstruction model for symmetric, leading to doubling of number of the sites in between silicon dimers. After the concentration reaches 2 monolayers, the binding energy of Li atoms on the surface becomes less than binding energy beneath the surface, so the diffusion turns to be thermodynamically allowed. As a result of the investigation, the ab-initio modeling puts light on the cause of experimentally observed decelerated lithium diffusion through silicon (001) surface and delivers an opportunity to determine possible techniques for surface modification, which will increase lithium atom binding energies in sites beneath silicon surface at low lithium concentrations.
diffusion, lithium, silicon, DFT.
References
  1. Nikolaev V. P., Morachevskii A. G., Demidov A. I., Bairachnyi E. V. Thermodynamic properties of solid alloys of lithium-silicon. Russ. J. Appl. Chem. 1980, Vol. 53 (9), Р. 1549−1551.
  2. Boukamp B. A., Lesh G. C., Huggins R. A. All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix. J. Electrochem. Soc. 1981, Vol. 128, P. 725–729.
  3.  Okamoto H. The Li-Si (Lithium-Silicon) system. Journal of Phase Equilibria. 1990, Vol. 11, P. 306.
  4. Obrovac M. N. Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochim. Solid-State Lett. 2004, Vol. 7, P. A93–A96.
  5. Kasavajjula U., Wang C., Appleby A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources. 2007, Vol. 163, P. 1003–1039.
  6. Huggins R. A. Lithium alloy negative electrodes. J. Power Sources. 1999, Vol. 81–82, P. 13–19.
  7. Beaulieu L. Y., Eberman K. W., Turner R. L., Krause L. J., Dahn J. R. Colossal Reversible Volume Changes in Lithium Alloys. Electrochem. Solid-State Lett. 2001, Vol. 4, P. A137–A140.
  8. Anani A., Crouch-Baker S., Huggins R. A. Kinetic and Thermodynamic Parameters of Several Binary Lithium Alloy Negative Electrode Materials at Ambient Temperature. Journal of the Electrochemical Society. 1987, Vol. 134, P. 3098.
  9. Wen C. J. Chemical diffusion in intermediate phases in the lithium-silicon system. J. Sol. St. Chem. 1981, Vol. 37, P. 271.
  10. Li H., Huang X. J., Chen L. Q., Zhou G., Zhang Z., Yu D., Mo Y. J., Pei N. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics. 2000, Vol. 135, P. 181.
  11. Besenhard J. O., Yang Y., Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries. J. Power Sources. 1997, Vol. 68, P. 87.
  12. Fedorov A. S., Popov Z. I., Kuzubov A. A., Ovchinnikov S. G. Theoretical study of the diffusion of lithium in crystalline and amorphous silicon. JETP Letters. 2012, Vol. 95, Iss. 3, P. 143–147.
  13.  Allen C. E., Beke D. L., Bracht H. Group III: Condensed Matter. 1997, No. 3, P. 2.
  14. Takamura T., Ohara S., Uehara M., Suzuki J., Sekine K. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. J. Power Sources. 2004, Vol. 129 (1), P. 96−100.
  15. Yin J. T., Wada M., Yamamoto K., Kitano Y., Tanase S., Sakai T. Micrometer-Scale Amorphous Si Thin-Film Electrodes Fabricated by Electron-Beam Deposition for Li-Ion Batteries. J. Electrochem. Soc. 2006, Vol. 153 (3), P. A472−A477.
  16. Zhang Q., Zhang W., Wan W., Cui Y. Wang E. Lithium Insertion In Silicon Nanowires: An ab Initio Study. Nano Lett. 2010, Vol. 10, P. 3243−3249.
  17. Chan C. K., Peng H. L., Liu G., McIlwrath K., Zhang X. F., Huggins R. A., Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, Vol. 3 (1), P. 31−35.
  18. Peng K. Q., Jie J. S., Zhang W. J., Lee S. T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 2008, Vol. 93 (3), P. 033105− 033107.
  19. Liu X., Zhang H. L. Q., Zhong L., Liu Y., Zheng H., Wang J. W., Cho J.-H., Dayeh S. A., Picraux S. T., Sullivan J. P., Mao S. X., Ye Z. Z., Huang J. Y. Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes. Nano Lett. 2011, Vol. 11 (6), P. 2251−2258.
  20. Dimov N., Kugino S., Yoshio M. Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochim. Acta. 2003, Vol. 48 (11), P. 1579−1587.
  21. Kim H., Seo M., Park M.-H. A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries. J. Angew. Chem., Int. Ed. 2010, Vol. 49 (12), P. 2146−2149.
  22. Chan C. K., Patel R. N., O’Connell M. J., Korgel B. A., Cui Y. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. ACS Nano. 2010, Vol. 4, P. 1443–1450.
  23. Park M. H., Kim M. G., Joo J., Kim K., Kim J., Ahn S., Cui Y., Cho J. Silicon Nanotube Battery Anodes. Nano Lett. 2009, Vol. 9 (11), P. 3844−3847.
  24. Song T., Xia J., Lee J.-H., Lee D. H., Kwon M.-S., Choi J.-M., Wu J., Doo S. K., Chang H., Park W., Zang D. S., Kim H., Huang Y., Hwang K.-C., Rogers J. A., Paik U. Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries. Nano Lett. 2010, Vol. 10 (5). P. 1710−1716.
  25. Zhou S., Wang D. W. Unique Lithiation and Delithiation Processes of Nanostructured Metal Silicides. ACS Nano. 2010, Vol. 4 (11), P. 7014−7020.
  26. Ng S. H., Wang J. Z., Wexler D., Konstantinov K., Guo Z. P., Liu H. K. Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries. Angew. Chem., Int. Ed. 2006, Vol. 45, P. 6896–6899.
  27. Kim H., Han B., Choo J., Cho J. Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries. Angew. Chem., Int. Ed. 2008, Vol. 47 (52), P. 10151−10154.
  28. Yao Y., McDowell M.T., Ryu I., Wu H., Liu N., Hu L., Nix W. D., Cui Y. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Lett. 2011, Vol. 11 (7), P. 2949−2954.
  29. Wang X. L., Han W. Q. Graphene Enhances Li Storage Capacity of Porous Single-Crystalline Silicon Nanowires. ACS Appl. Mater. Inter. 2010, Vol. 2 (12), P. 3709−3713.
  30. Sun C. Y., Qin C., Wang C. G., Su Z. M., Wang S., Wang X. L., Yang G. S., Shao K. Z., Lan Y. Q., Wang E. B. Chiral Nanoporous Metal-Organic Frameworks with High Porosity as Materials for Drug Delivery. Adv. Mater. 2011, Vol. 23 (47), P. 5629.
  31. Qu Y. Q., Liao L., Li Y. J., Zhang H., Huang Y., Duan X. F. Electrically conductive and Optically Active Porous Silicon Nanowires. Nano Lett. 2009, Vol. 9, P. 4539–4543.
  32. Magasinski A., Dixon P., Hertzberg B., Kvit A., Ayala J., Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, Vol. 9, P. 353–358.
  33. Ge M., Rong J., Xin F., Zhou C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, Vol. 12, P. 2318–2323.
  34. Kleine H., Eckhardt M., Fick D. Mean residence time of Li atoms adsorbed on Si(100) and Si(111) surfaces. Surface Science. 1995, Vol. 329, P. 71.
  35. Peng B., Cheng F., Tao Z., Che J. Lithium transport at silicon thin film: Barrier for high-rate capability anode. J. Chem. Phys. 2010, Vol. 133, P. 034701.
  36. Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993, Vol. 47, P. 558.
  37. Kresse G., Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B. 1994, Vol. 49, P. 14251.
  38. Kresse G., Furthműller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, Vol. 54, P. 11169.
  39. Hohenberg H., Kohn W. Inhomogenius Electron Gas. Phys. Rev. А. 1964, Vol. 136, P. B864–B871.
  40. Kohn W., Sham L. J. Self-Consistent Equations including Exchange and Correlation Effects. Phys. Rev. А. 1965, Vol. 140, P. A1133–A1138.
  41. Blochl P. E. Projector augmented-wave method. Phys. Rev. B. 1994, Vol. 50, P. 17953.
  42. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, Vol. 59, P. 1758–1775.
  43. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 2006, Vol. 27, P. 1787.
  44. Henkelman G., Uberuaga B. P., Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, Vol. 113, P. 9901.
  45. Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976, Vol. 13, P. 5188.
  46. Battaglia C. Structure and stability of the Si (331)-(12 × 1) surface reconstruction investigated with first-principles density functional theory. Physical Review B. 2009, Vol. 80, P. 214102.
  47. Stekolnikov A. A., Furthmüller J., Bechstedt F. Absolute surface energies of group-IV semiconductors: dependence on orientation and reconstruction. Physical Review B. 2002, Vol. 65, P. 115318.
  48. Jung S. C., Han Y. K. Facet-dependent lithium intercalation into Si crystals: Si (100) vs. Si (111). Physical Chemistry Chemical Physics. 2011, Vol. 13, P. 21282–21287.
  49. Bracht H., Stolwijk N. A. Diffusion in Si. Diffusion in Semiconductors. Springer Berlin Heidelberg, 1998, P. 16.
  50. Johansson M.K.-J., Gray S. M., Johansson L. S. O. Low coverages of lithium on Si(001) studied with STM and ARUPS / M.K.-J. Johansson. Phys. Rev. B. 1996, Vol. 53, P. 1362.
  51. Johansson L. S. O., Grehk T. M., Gray S. M., Johansson M., Flodström A. S. High resolution core-level spectroscopy study of low-coverage lithium adsorption on the Si(100)2 × 1 surface. Nucl. Instrum. Methods Phys. Res. B. 1995, Vol. 97, P. 364.
  52. Grehk T. M., Johansson L. S. O., Gray S. M., Johansson M., Flodström A. S. Absorption of Li on the Si(100)2×1 surface studied with high-resolution core-level spectroscopy. Phys. Rev. B. 1995, Vol. 52, P. 16593.
  53. Shi H. Q., Radny M. W., Smith P. V. Atomic and electronic structure of the Si(0 0 1)2 × 1–Li chemisorption system at 1.0 monolayer coverage. Surf. Sci. 2005, Vol. 574, P. 233.
  54. Ko Y.-J., Chang K. J., Yi J.-Y. Atomic and electronic structure of Li-adsorbed Si(100) surfaces. Phys. Rev. B. 1997, Vol. 56, P. 9575.
  55. Voevodin V. V., Zhumatii S. A., Sobolev S. I., Antonov A. S., Bryzgalov P. A., Nikitenko D. A., Stefanov K. S., Voevodin Vad. V. [Practice supercomputer “Lomonosov”]. Otkrytye sistemy. 2012, No. 7, P. 3

Mikhaleva Natalia Sergeevna – junior research fellow, Institute of Nonferrous Metals and Materials, Siberian Federal University. Е-mail: natasha.eliseeva90@gmail.com

Kuzubov Alexander Alexandrovich – Cand. Sc., Docent, Siberian Federal University. Е-mail: alex_xx@rambler.ru

Denisov Viktor Mikhailovich – Dr. Sc., Professor, Head of Department of Physical and Inorganic Chemistry, Siberian Federal University. Е-mail: VDenisov@sfu-kras.ru

Kovaleva Evgenia Andreevna – postgraduate student, assistant researcher, Siberian Federal University. Е-mail: kovaleva.evgeniya1991@mail.ru

Shostak Svetlana Alexandrovna – student, Siberian Federal University. Е-mail: sa.shostakk@gmail.com