UDK 539.2
QUANTUM CHEMICAL STUDY OF STRUCTURE AND PROPERTIES OF CrN MONO- AND BILAYER
A. V. Kuklin [1]*, A. A. Kuzubov [1], [2], V. M. Denisov [1], E. A. Kovaleva [1], S. A. Shostak [1]
[1] Siberian Federal University 79, Svobodny Av., Krasnoyarsk, 660041, Russian Federation [2] L. V. Kirensky Institute of Physics SB RAS 50/38, Akademgorodok, Krasnoyarsk, 660036, Russian Federation *E-mail: artem.icm@gmail.com
Lately, such materials as graphene h-BN and transition metal dichalcogenides have been widely used in various fields and have received a lot of attention owing to its numerous device applications (spintronics, photovoltaic, valleitronics). This is due to the low dimensionality and different properties from those bulk materials. At the same time, at this stage of scientific development, other two-dimensional materials have been actively studied, including carbides and nitrides of transition metals. Some of them have been experimentally obtained, characterized and have great potential for application in nanoelectronics. Similar to the 2D graphene structures can be based on chromium nitride whose magnetic properties will depend on the coordination number and the number of uncoupled electrons correspondingly .In this work, using PAW method and the gradient corrected density functional GGA-PBE within the framework of generalized Kohn–Sham density functional theory (DFT+U) considering weak dispersion interaction, we have predicted the existence of a chromium nitride mono- and bilayers of (100) and (111) crystallographic surface. It was shown that the monolayers geometry relative to the crystalline phase was changed. The 2D CrN (100) and (111) are perfectly flat. To comparison of the energy stability of two dimensional CrN the relative energy of monolayer formation was calculated. Using spin-polarized calculations we calculate ferromagnetic and antiferromagnetic states. The analysis of electronic structure shows that these materials are ferromagnets with 100 % spin polarization. According to the classical Heisenberg model, the exchange parameter J has been calculated (for monolayer 100). The dependence of the changes in the properties during the transition from mono to bilayers structures was investigated.
CrN, thin films, monolayers, DFT, ab initio, spintronics.
References

1. Zhou X., Chen H., Shu D., He C., Nan J. Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J. Phys. Chem. Solids., 2009, Vol. 70, P. 495–500.

2. Siegel D. J., Hector L. G., Adams J. B. First-principles study of metal–carbide/nitride adhesion: Al/VC vs. Al/VN. Acta Mater., 2002, Vol. 50, P. 619−631.

3. Toth L. E., Transition Metal Carbides and Nitrides. New York, Academic, 1971, 279 p.

4. Bhobe P. A., Chainani A., Taguchi M., Takeuchi T., Eguchi R., Matsunami M., Ishizaka K., Takata Y., Oura M., Senba Y., Ohashi H., Nishino Y., Yabashi M., Tamasaku K., Ishikawa T., Takenaka K., Takagi H., Shin S. Evidence for a Correlated Insulator to Antiferromagnetic Metal Transition in CrN. Phys. Rev. Lett., 2010, Vol. 104, P. 236404.

5. Corliss L. M., Elliott N., Hastings J. M. Antiferromagnetic Structure of CrN. Phys. Rev., 1960, Vol. 117, P. 929–935.

6. Miao M. S., Lambrecht W. R. L. Structure and magnetic properties of MnN, CrN, and VN under volume expansion. Phys. Rev. B, 2005, Vol. 71, P. 214405.

7. Browne J. D., Liddell P. R., Street R., Mills T. An investigation of the antiferromagnetic transition of CrN. Phys. Status Solidi A, 1970, Vol. 1, P. 715–723.

8. Ibberson R. M. and Cywinski R. The magnetic and structural transitions in CrN and (CrMo)N. Physica B, 1992, Vol. 180–181, P. 329–332.

9. Eddine M. N., Sayetat F., Felix E., Hebd C. R. Seances Acad. Sci., Ser. B, 1969, 269, P. 574–577.

10. Herle P. S., Hedge M. S., Vasathacharya N. Y., Philip S.,. Rao M. V. R, Sripathi T. Synthesis of TiN, VN, and CrN from Ammonolysis of TiS2, VS2, and Cr2S3. J. Solid State Chem., 1997, Vol. 134, P. 120–127.

11. Constantin C., Haider M. B., Ingram D., Smith A. R. Metal/semiconductor Phase Transition in Chromium Nitride (001) Grown by rf-Plasma-assisted Molecular Beam Epitaxy. Appl. Phys. Lett., 2004, Vol. 85, P. 6371–6373.

12. Glaser A., Surnev S., Ramsey M.G., Lazar P., Redinger J., Podloucky R., Netzer F.P. The growth of epitaxial VN(111) nanolayer surfaces. Surf. Sci., 2007, Vol. 601, P. 4817–4823.

13. Lazar P., Rashkova B., Redinger J., Podloucky R., Mitterer C., Scheu C., Dehm G. Interface structure of epitaxial (111) VN films on (111) MgO. Thin Solid Films, 2008, Vol. 517, P. 1177–1181.

14. Inumaru K., Koyama K., Imooka N., Yamanaka S. Controlling the structural transition at the Néel point of CrN epitaxial thin films using epitaxial growth. Phys. Rev. B, 2007, Vol. 75, P. 054416.

15. Zhang Z., Liu X., Yakobson B. I., Guo W. Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. J. Am. Chem. Soc., 2012. Vol. 134, P. 19326 (9).

16. Zhang R.-Q., Kim C.-E., Delley B., Stampfl C., Soon A. A first-principles study of ultrathin nanofilms of MgO-supported TiN. Phys. Chem. Chem. Phys., 2012, Vol. 14, P. 2462–2467.

17. Bai Y., Deng K., Kan E. Electronic and magnetic properties of an AlN monolayer doped with first-row elements: a first-principles study. RSC Adv., 2015, Vol. 5, P. 18352–18358.

18. Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L., Gogotsi Y., Barsoum M. W. Two-Dimensional Transition Metal Carbides. ACS Nano, 2012, Vol. 6 (2), P 1322–1331.

19. Kuklin A. V., Kuzubov A. A., Eliseeva N. S., Tomilin F. N., Fedorov A. S., Krasnov P. O. Theoretical Investigation of the Structure and Properties of the VN(111) Monolayer on the MgO(111) Surface. Physics of the Solid State, 2014, Vol. 56, No. 2, P. 229–234.

20. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis. Phys. Rev. B, 1996, Vol. 54., P. 11169–11186.

21. Hohenberg P., Kohn W. Inhomogeneous Electron Gas. Phys. Rev. B, 1964, Vol. 136, P. 864−871.

22. Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A, 1965, Vol. 140, P. 1177–1181.

23. Perdew P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, Vol. 77, P. 3865–3868.

24. Anisimov V. I., Zaanen J., Andersen O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B., 1991, Vol. 44, P. 943–954.

25. Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B., 1998, Vol. 57, P. 1505–1509.

26. Herwadkar A., Lambrecht W. R. L. Electronic structure of CrN: A borderline Mott insulator. Phys. Rev. B., 2009, Vol. 79, P. 035125 (10).

27. Grimme S., Antony J., Ehrlich S., Krieg H. A. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, Vol. 132, P. 154104 (19).

28. Blochl P. E. Projector augmented-wave method. Phys. Rev. B., 1994, Vol. 50, p. 17953−17979.

29. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B., 1999, Vol. 59, P. 1758–1775.

30. Monkhorst H. J., Pack H. J. Special points for Brillouin-zone integrations. Phys. Rev. B., 1976, Vol. 13, P. 5188–5192.

31. Wyckoff R. W. G. Crystal Structures. New York, Academic, 1963, 237 p.

32. Kan, M., Zhou, J., Sun, Q., Kawazoe, Y. and Jena P. The Intrinsic Ferromagnetism in a MnO2 Monolayer. J. Phys. Chem. Lett., 2013, 4, P. 3382–3386.


Kuklin Artem Valentinovich – postgraduate student, research engineer, Siberian Federal University. Е-mail: artem.icm@gmail.com

Kuzubov Alexander Alexandrovich – Cand. Sc., Docent, Siberian Federal University. Е-mail: alex_xx@rambler.ru

Denisov Viktor Mikhailovich – Dr. Sc., Professor, Head of Department of Physical and Inorganic Chemistry, Siberian Federal University. Е-mail: VDenisov@sfu-kras.ru

Kovaleva Evgenia Andreevna – postgraduate student, assistant researcher, Siberian Federal University. Е-mail: kovaleva.evgeniya1991@mail.ru

Shostak Svetlana Alexandrovna – student, Siberian Federal University. Е-mail: sa.shostakk@gmail.com