UDK 629.78.05.017.1
EXTENDING THE LIFE OF SATELLITE ON-BOARD UNITS
N. A. Testoedov, V. V. Dvirnyi, E. A. Morozov, G. V. Dvirnyi, N. V. Eremenko*
JSC “Information satellite systems” named after academician M. F. Reshetnev” 52, Lenin Str., Jeleznogorsk, Krasnoyarsk region, 662972, Russian Federation *E-mail: erko@iss-reshetnev.ru
When units operate on-board of a high capable telecommunication satellite (SC), their life shall expectancy be enhanced. 15-year lifetime, 15kW power, tenths of transponders in С-, Ku-, Ka- and L-bands on-board a spacecraft stipulate the need to develop and to perform a ground development testing on a large amount of thermally stressed on-board units. To be able to reduce on-board units operating temperature ranges it is very important to implement a correct approach in SC thermal control subsystem (TCS) design; an example of main concepts of TCS design for a thermally stressed SC is provided. With the purpose to extend the life of SC on-board units it is necessary to ensure effective conductive paths between the units and the SC panels or SC panels skins where the units are installed. Thermal analyses for on-board units shall be performed considering different modes of units operation, using, for example, a finite-element method, available in COSMOS application of SolidWorks. To ensure long operating life of unit EEE parts used on thermally stressed SC derating of 30…50 % shall be provided. Hot and cold cases of on-board unit baseplate temperatures are being reviewed; the calculation gives the temperatures from minus 10 to plus 40 оС for EEE parts. On-board units’ reliability directly depends on their life expectancy, which, in its turn, depends on the thermal resistance processes occurring within them. A review of theoretical estimation has been provided. The results of the calculations performed for on-board units correlate well with the results of the ground tests and are validated by the results of successful operation of powerful communications satellites such as Express-AM5 and Express-AM6. The paper demonstrates the results of accurate measurements in the temperature range from minus 100 to plus 100 оC done under thermal vacuum for a typical printed circuit board used within an onboard unit designed and manufactured by JSC ISS.
on-board units extended life expectancy, ground testing, thermally stressed units, thermal control subsystem, thermal strength.
References
  1. [Reliability of satellite in the modern environment]. Novosti kosmonavtiki. 2014, Vol. 24, No. 02 (373), P. 56–59 (In Russ.).
  2. [Express-AM6. Replenishment of the telecom satellite orbital constellation]. Sibirskii sputnik ISS-Reshetnev. 2014, No. 15 (369), P. 1 (In Russ.).
  3. [A new satellite for the Russian satellite orbital constellation]. Sibirskii sputnik ISS-Reshetnev. 2015, No. 4 (377), P. 1 (In Russ.).
  4. SESAT sputnik. [SESAT Satellite]. Wikipedia, the free encyclopedia. Available at: https://ru.wikipedia.org/wiki/Sesat_(%F1%EF%F3%F2%ED%E8%EA) (accessed 01.04.2015).
  5. Dul’nev G. N., Semyashkin E. M. Teploobmen v radioelektronnykh apparatakh [Heat transfer in avionics]. Moscow: Energiya, 1968. 361 p.
  6. Kondrat’ev G. M., Dul’nev G. N, Platunov E. S.et al. [Heat transfer in unit design]. Prikladnaya fizika. St.Petersburg: SPbGU ITMO, 2003. 560 p.
  7. Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies. Edited by David G. Gilmore.–2nd ed. American Institute of Aeronautics and Astronautics (AIAA), Reston, Virginia, 2002, 836 p.
  8. Suntsov S. B., Alekseev V. P., Karaban V. M. et al. Prognozirovanie nadezhnosti uzlov i blokov radiotekhnicheskikh ustroistv kosmicheskogo naznacheniya na osnove modelirovaniya napryazhenno-deformiruemykh sostoyanii [Prediction of reliability for spacecraft avionics on the basis of modelling] Tomsk, Tomsk State University of Control Systems and Radioelectronics Publ., 2012, 114 p.
  9. Arzamasov B. N., Makarova V. I., Mukhin G. G.et al. Materialovedenie [Materials science]. College textbook. 7th ed. Moscow, Moscow State Technical University Publ., 2005, 648 p.
  10. Sobolev N. D., Egorov V. I. [Thermal fatigue and thermal shock]. Prochnost' i deformatsiya v neravnomernykh temperaturnykh polyakh [Strength and distortion in uneven temperature fields]. Moscow, Gosatomizdat Publ., 1962, P. 94–183.
  11. Shapovalov L. A. [Thermal strength of plates and shells]. Prochnost' i deformatsiya v neravnomernykh temperaturnykh polyakh [Strength and distortion in uneven temperature fields]. Moscow, Gosatomizdat Publ., 1962, P. 241–255.
  12. [Basics to estimate yield for unevenly temperature stressed parts]. Prochnost' i deformatsiya v neravnomernykh temperaturnykh polyakh [Strength and distortion in uneven temperature fields]. Moscow, Gosatomizdat Publ., 1962, P. 183–239.
  13. Kartashov E. M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods in rigid bodies thermal conductivity theory]. 3rd ed. Moscow, Vysshaya shkola Publ., 2001, 550 p.
  14. Samarskii A. A., Babishchevich P. N. Vychislitel'naya teploperedacha [Calculated thermal transfer]. Moscow, Editorial URSS Publ., 2003, 784 p.
  15. Dorokhov A. R., Zavorin A. S., Kazanov A. M. et al. Modelirovanie teplovydelyayushchikh sistem [Modeling of dissipating systems]. Tomsk, NTL Publ., 2000, 233 p.
  16. Belyaev N. M., Ryadno A. A. Metody teorii teploprovodnosti [Thermal conductivity theory methods]. Two vol.. Moscow, Vysshaya shkola Publ., 1982, 327 p.
  17. Zarubin V. S. Inzhenernye metody resheniya zadach teploprovodnosti [Engineering methods to solve thermal conductivity aspects]. Moscow, Energoatomizdat Publ., 1983, 326 p.
  18. Temnikov A. V., Slesarenko A. P. Sovremennye priblizhennye metody resheniya zadach teploobmena [Advanced methods of approximate problem solving on heat transfer]. Samara, SamPI Publ., 1991, 88 p.
  19. Samarskii A. A. Chislennye metody matematicheskoi fiziki [Mathematical physics numerical methods]. Moscow: Nauchnyi mir, 2000, 316 p.
  20. Khalimanovich V. I. et al. [Communication and navigation satellite honeycomb panels. Experience in design and manufacturing]. Effektivnost' sotovykh konstruktsii v izdeliyakh aviatsionno-kosmicheskoi tekhniki [Efficiency of aircraft/spacecraft honeycomb structures]. 3rd international workshop package, Dnepropetrovsk, May, 27–29, 2009. Ukr. NII tekhnologii mashinostroeniya. Dnepropetrovsk, 2009, P. 161–171 (In Russ.).

Testoedov Nikolai Alekseevich – Dr. Sc., Associate Member of RAS, Professor, Director General of JSC “Information Satellite System” named after academician M. F. Reshetnev”. E-mail: office@iss-reshetnev.ru

Dvirnyi Valeryi Vasilyevich – Dr. Sc., Professor, intellectual property discovery and protection chief specialist, JSC “Information Satellite System” named after academician M. F. Reshetnev”. E-mail: dvirnyi@iss-reshetnev.ru

Morozov Egor Aleksandrovich – head of Information technology department, JSC “Information Satellite System” named after academician M. F. Reshetnev”. E-mail: morozov@iss-reshetnev.ru

Dvirnyi Guryi Valeryevich – Cand. Sc., associate engineer for commissioning and testing, JSC “Information Satellite System” named after academician M. F. Reshetnev”. E-mail: dg1802@mail.ru

Eremenko Natalya Valeryevna – Master’s Degree student, Siberian Federal University, interpreter,
JSC “Information Satellite System” named after academician M. F. Reshetnev”. E-mail: erko@iss-reshetnev.ru