UDK 621.396.946.2
THE POSSIBILITY OF CONSTRUCTING A RADIO COMMUNICATION USING ORBITAL REFLECTORS AND MAGNETIC ANTENNAS POLARIZATION ROTATING
N. A. Testoedov [1], V. V. Dvirnyi [1], G. G. Krushenko [2]*, G. V. Dvirnyi [1]
[1] JSC “Information satellite systems” named after academician M. F. Reshetnev” 52, Lenin str., Jeleznogorsk, Krasnoyarsk region, 662972, Russian Federation [2] Institute of Computational Modeling SB RAS 50/44, Akademgorodok, Krasnoyarsk, 660036, Russian Federation *E-mail: genry@icm.krasn.ru
The use of space for traditional Amateur radio applications is possible using relatively cheap only briefly long microsatellites, which are displayed on a low orbit of the space station crew. The radio can be built on the basis of reflectors and frequency-independent small magnetic antenna with circular polarization, which must fulfill a special function: to associate radiated into space electromagnetic energy with electronic components of the apparatus, and therefore are one of the main defining elements of the building radio systems. Since there are no magnetic charges, and therefore, no magnetic current, understood as the movement of these charges, a magnetic emitter, a magnetic current element, cannot be accomplished, however, if the antenna radiator initially creates an alternating rotating vortex magnetic field, it is possible to create the antenna having in it the properties of magneto-electric induction. The first satellite phone communication between America and Britain was established through a massive experimental American satellite Echo1, launched into low earth orbit, which represented a ball with a diameter of about 30 m, made of radiotracer material. The type of such a communication satellite can be used in the proposed radio communications. However, since the receiving and transmitting antennas are highly directional, the spacecraft must be in the orbit of such an orientation that it took the signal and reflected it. The diameter of the sphere can be much smaller, and the position in orbit to keep a corrective propulsion system, located in the center of mass. Radioreflective surface may be made of an inflatable film or setpolicy made, for example, of gold-plated tungsten wire with a diameter of about 30 μm deployed in the field in transformable structures. Possible embodiment of setpolicy of magnetically soft material type steel A, E, iron “Armco” or permalloy, which are perfect conductors of magnetic flux and do not require cooling to cryogenic temperatures.
radio, microsatellites, magnetic antennas.
References
  1.  Armizonov N. E., Armizonov A. N. [Magnetic antenna polarization rotating – the way of the efficient use of spectrum radiocaster]. Aviakosmicheskaya tekhnika i tekhnologiya. 2014, No. 2, P. 30–37 (In Russ.).
  2. Artemenko Yu. N., Karpenko A. P., Volkomorov S. V. [The possibility of parallel mechanisms for orientation space Observatory “MILLIMETRON”]. Nauka i obrazovanie. 2014, No. 11, P. 357–370 (In Russ.).
  3. Assis K. T., Neves M. C. D. History of the 2.7 K Temperature Prior to Penzias and Wilson. Apeiron. 1995, Vol. 2, No. 3, Р. 79–84.
  4. Penzias A. A., Wilson R. W. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophysical Journal. 1965, Vol. 142, P. 419–421.
  5. Etkins P. Poryadok i besporyadok v prirode [Order and disorder in nature]. Moscow, Mir Publ., 1987, 224 p.
  6. Usloviya ispol'zovaniya vydelennykh polos radiochastot [Terms of use of the allocated frequency bands]. Available at: http://omskair.ru/index.php/o-vydelenii-polos/ 167-plan-chastot-lyubitelskikh-kv-diapazonov-nch-lf-sch-mf-i-vch-hf.html (accessed 27.02.2015).
  7. Shaydurov G. Ya. Osnovy teorii i proektirovaniya radiotekhnicheskikh sistem [Fundamentals of the theory and design of radio systems]. Krasnoyarsk, SFU Publ., 2010, 283 p.
  8. Radin V. I., Bruskin D. E., Zakharovich A. E. Elektricheskie mashiny [Electrical machines]. Moscow, Vysshaya shkola Publ., 1988, 328 p.
  9. Yavorskiy B. M., Detlaf A. A. Spravochnik po fizike [Handbook of physics]. Moscow, Nauka Publ., 1985, 512 p.
  10. Lavrov V. I., Somov V. G., Sivirin P. Ya. Izmerenie parametrov krupnogabaritnykh bortovykh antenn sputnikovykh sistem svyazi [The measurement of large-size on-Board antennas to satellite communication systems]. Krasnoyarsk, SibSAU Publ., 2010, 152 p.
  11.  Rotkhamel' K., Krishke A. Antenny [Antennes]. Moscow, Danvel Publ., 2005, 416 p.
  12. Kudryavin L. A., Khalimanovich V. I., Zavaruev V. A. et al. Otrazhatel'naya vyazanaya setchataya poverkhnost' antenny i sposob ee vyrabotki [Reflective knitted mesh surface of the antenna and its production method]. Patent RF, no. 2198453, 2003.
  13. Belyaev O. F., Zavaruev V. A., Kudryavin, Khalimanovich V. I. et al. [Knitted metal Steklovolokno to the reflecting surface of the variable loading of terrestrial and space antennas]. Tekhnicheskiy tekstil'. 2007, No. 16, P. 59–64 (In Russ.).

Testoedov Nikolai Alekseevich – Dr. Sc., Associate Member of RAS, Professor, Director General of JSC “Information Satellite System” named after academician M. F. Reshetnev”. E-mail: office@iss-reshetnev.ru

Dvirnyi Valeryi Vasilyevich – Dr. Sc., Professor, intellectual property discovery and protection chief specialist, JSC “Information Satellite System” named after academician M. F. Reshetnev”. E-mail: dvirnyi@iss-reshetnev.ru

Krushenko Genry Gavrilovich – Dr. Sc., professor Chief research officer, Institute of Computational Modeling, SB RAS. E-mail: genry@icm.krasn.ru

Dvirnyi Guryi Valeryevich – Cand. Sc., associate engineer for commissioning and testing, JSC “Information Satellite System” named after academician M. F. Reshetnev”. E-mail: dg1802@mail.ru