UDK 629.78.002.3
CORROSION RESISTANCE MAO COATINGS ON TITANIUM ALLOY
D. V. Ravodina [1], T. V. Trushkina [2], A. E. Miheev [1], A. V. Girn [1], I. I. Khomenko [1]
[1] Siberian State Aerospace University named after academician M. F. Reshetnev 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russian Federation [2] ОАО “Krasnoyarsk Machine Building Plant” 29, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russian Federation Е-mail: Dashaorlova12@yandex.ru
One of the promising materials used in various fields of technology, is titanium and its alloys. This is due to its favorable combination of physical and chemical properties and improved corrosion resistance to the atmospheric conditions. However, in certain corrosive media, especially in the presence of abrasion, titanium and its alloys is the subject to corrosive degradation. The electroplating method used currently to improve the corrosion resistance of metals, has several disadvantages: low ecological safety of the process associated with aggressive electrolytes used, the need for additional operations washing, degreasing, etching, strict observance of the temperature regime during processing. The resulting coatings electroplated not meet the requirements for corrosion resistance in corrosive environments, especially in the presence of abrasive wear. The paper proposes a method for improving the corrosion resistance of titanium and its alloys in corrosive environments, especially in the presence of abrasion, the metal coating on the surface of the protective layer microarc oxidation. The studies of morphology, chemical composition and thickness of the coatings were conducted. These studies have shown that in the MAO coating not only the phase γ-TiO2 is formed, but also the phase α-TiO2, which is a major contributor to the hardened layer. Hardening of microarc oxidation during metals due to the formation on the surface coating which consists of titanium oxide and oxides of chemical elements contained in the electrolyte composition. Accelerated Laboratory Test corrosion resistance coatings showed that the coatings have MAO higher corrosion resistance as compared to coatings deposited by galvanic anodizing. Samples treated in silicate-alkaline electrolyte have the highest corrosion resistance. Process conditions for applying a corrosion resistant coating on titanium and its alloys are defined.
titanium alloys, corrosion, protective coating, microarc oxidation
References
  1. Tomashov N. D. Passivnost' i zashchita metallov ot korrozii [Passivity and protection of metals against corrosion]. Moscow, Nauka Publ., 1965, 208 p.

  2. Vorob'eva G. Ya. Korrozionnaya stoykost' materialov v agressivnykh sredakh khimicheskikh proizvodstv [Material corrosion resistance in aggressive environments of chemical plants]. Moscow, Khimiya Publ., 1975, 816 p.

  3. Suminov I. V. et al. Mikrodugovoe oksidirovanie (teoriya, tekhnologiya, oborudovanie) [Microarc oxidation (theory, technology, equipment)]. Moscow, EKOMET Publ., 2005, 368 p.

  4. Gordienko P. S., Gnedenkov S. V. Mikrodugovoe oksidirovanie titana i ego splavov [Microarc oxidation of titanium and its alloys].Vladivostok, Dal'nauka Publ., 1997, 185 p.

  5. Terekhin N. A., Statsura V. V., Golenkova A. A., Ivasev S. S., Girn A. V. [Technological capabilities of micro-arc oxidation of aluminum alloys].Vestnik mashinostroeniya. 2003, no. 2, p. 56–63 (In Russ.).

  6. Girn A. V., Vakhteev E. V., Trushkina T. V., Orlova D. V. [The influence of technological parameters of micro-arc oxidation on the corrosion resistance
    of coatings]. Miass. Mekhanika i protsessy upravleniya. Materialy XXXXI Vserossiyskogo simpoziuma [Miass. Mechanicsand management processes: materials XXXXI Proc. symposium]. Moscow, RAN Publ., 2011, vol. 3, p. 168–173 (In Russ.).

  7. Trushkina T. V., Girn A. V. [The corrosion resistance of MAO coatings in aggressive environments]. Vestnik SibGAU, 2014, vol 1(53), p. 179–184 (In Russ.).

  8. Golenkova A. A., Ivasev S. S., Ovsyannikov M. A. [Analysis of the effectiveness of technology for the formation of wear-resistant coatings on aluminum alloys microarc way]. Vestnik SibGAU, 2007, vol. 1 (14), p. 108–111. (In Russ.).

  9. Girn A. V., Orlova D. V., Vakhteev E. V., Trushkina T. V. [Influence of process parameters on the elemental composition of MAO coatings on aluminum and titanium alloys] Vestnik SibGAU, 2012, vol. 4 (44),
    p. 168–171 (In Russ.).

  10. Kuznetsov Yu. A., Kulakov K. V., Goncharenko V. V. Osobennosti vybora elektrolita dlya polucheniya tolstosloynykh keramicheskikh pokrytiy [Features choice of electrolyte to produce thick ceramic coatings] (In Russ.). Аvailable at: http://science-bsea.narod.ru/ 2011/mashin_2011_14/kuznecov_texno.htm.

  11. Nikolaev A. V., Markov G. A., Pishchevichniy B. N. [A new phenomenon in the electrolysis]. Izv. SO AN SSSR. Ser. Khim. Nauk, 1977, vol. 5, p. 32–33 (In Russ.).

  12. Rudnev V. S. et al. Sposob mikrodugovogo oksidirovaniya ventil'nykh metallov i ikh splavov [A method of micro-arc oxidation of valve metals and their alloys]. Patent RF, no 1783004, 1992.

  13. Yarovaya T. P., Gordienko P. S., Rudnev V. S., Nedozorov P. M. Sposob polucheniya opticheski chernykh zashchitnykh pokrytiy na ventil'nykh metallakh [A method for producing an optically black coatings on valve metals]. Patent RF, no 2096534, 1998.

  14. Rudnev V. S., Gordienko P. S., Kurnosova A. G., Orlova T. I. Sposob mikrodugovogo polucheniya zashchitnykh plenok na poverkhnosti metallov i ikh splavov [A method of micro-production of protective films on the surface of metals and their alloys]. Patent RF, no. 2061107, 1996.

  15. Gordienko P. S., Gnedenko S. V., Khrisanfova O. A., Vostrikova N. G., Kovryakov A. N. Elektrolit dlya formirovaniya pokrytiy na ventil'nykh metallakh [The electrolyte for forming coatings on valve metals]. Patent RF, no. 2046156, 1995.

  16. Gordienko P. S., Khrisanfova O. A., Nuzhdaev V. A., Zvachaynyy V. P. Elektrolit dlya anodirovaniya titana i ego splavov [Electrolyte for anodizing titanium and its alloys]. Patent RF, no. 1156409, 1996.

  17. Butyagin P. I., Khokhryakov E. V., Mamaev A. I. [The influence of electrolyte composition on the wear resistance of MAO-coatings]. Tekhnologiya metallov, 2005, no. 1, p. 36–40.

  18. Zhukov S. V. Issledovanie protsessov i razrabotka tekhnologii formirovaniya mnogo-funktsional'nykh pokrytiy MDO na titanovykh splavakh
    v priborostroenii.
    Avtoref. dis. kand. tekhn. nauk [Investigation of the processes of formation and development of the technology of multifunctional coatings on titanium alloys MDO in instrument. Author. dis. Cand. tehn. Sciences]. Moscow, MATI Rossiyskiy gosudarstvennyy tekhn. universitet im. K. E. Tsiolkovskogo Publ., 2009.

  19. Nechaev G. G. [Microarc oxidation of titanium alloys in alkaline electrolytes]. Kondensirovannye sredy i mezhfaznye granitsy. 2012, vol. 14, no. 4, p. 453–455. (In Russ.).

  20. Mamaev A. I., Mamaeva V. A. Sil'notokovye mikroplazmennye protsessy v rastvorakh elektrolitov [High current microplasma processes in electrolyte solutions]. Novosibirsk, Izdatel'stvo SO RAN Publ., 2005, 255 p.

  21. Gordienko P. S., Vasilenko V. S. [Formation of coatings on valve metals and alloys in electrolytes with a capacitive energy regulation at microarc oxidation]. Zashchita metallov, 2006, vol. 42, no. 5 (In Russ.).

  22. Mamaev A. I., Mamaeva V. A., Borikov V. N., Dorofeeva T. I. Formirovanie nanostrukturnykh nemetallicheskikh neorganicheskikh pokrytiy putem lokalizatsii vysokoenergeticheskikh potokov na granitse razdela faz [Formation of nanostructured inorganic non-metallic coatings by the localization of high-energy fluxes at the interface]. Tomsk, Izd-vo Tom. un-ta Pudl., 2010, 360 p.

  23. Gordienko P. S. Obrazovanie pokrytiy na anodno-polyarizovannykh elektrodakh v vodnykh elektrolitakh pri potentsialakh iskreniya i proboya [Forming a coating on the anode-polarized electrodes in aqueous electrolytes at potentials sparking and breakdown]. Vladivostok, Dal’nauka Publ., 1996, 216 p.


Ravodina Daria Vladimirovna – postgraduate student, Siberian State Aerospace University named after academician M. F. Reshetnev. E-mail: Dashaorlova12@yandex.ru

Trushkina Tatiana Vladimirovna – postgraduate student, JSC “Krasnoyarsk Machine Building Plant”. E-mail: Tatyana.si@mail.ru

Miheev Anatolii Egorovich – Dr. Sc., Professor, head of Flying vehicles department, Siberian State Aerospace University named after academician M. F. Reshetnev. E-mail: michla@mail.ru

Girn Aleksei Vasilyevich – Cand. Sc., Docent, Docent of Flying vehicles department, Siberian State Aerospace University named after academician M. F. Reshetnev. E-mail: girn007@gmail.com

Khomenko Igor Ivanovich – engineer, Siberian State Aerospace University named after academician
M. F. Reshetnev. E-mail: khomenko.igor.iv@gmail.com