UDK 629.7.054
AN ELECTROMECHANICAL EXECUTIVE BODY BASED ON THE CONTACTLESS DIRECT CURRENT MOTOR WITH A WINDING PRINTING DISK STATOR FOR SMALL SPACECRAFTS
T. N. Balandina*, E. A. Balandin
JSС “Information Satellite System” named after academician M. F. Reshetnev” 52, Lenin Str., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation *Е-mail: error.balandina@yandex.ru
With the advent of spacecraft designed for long-term operation in space and required constant orientation electromechanical executive bodies on the basis of engine - flywheel began to be applied. It’s happened because total mass of the control device and the equivalent mass (according to the needs power) source of energy (for example solar battery) in this case do not depend on operating period of the electromechanical executive body on the basis of reaction flywheel. At the same time, similar characteristics of control systems with reaction motors increases with the duration of the orientation of the flight. Furthermore, the required amount of inclusions reaction motors that reduces the deterioration of system reliability increases. Therefore, for spacecraft requiring prolonged orientation, application systems with engine-flywheels is more rational. Creating a new electromechanical executive body on the basis of the engine speed managed flywheel system for spacecraft orientation with improved weight and size, will save consumers money when launching spacecraft. The requirement of minimum weight is one of the main imposed on electromechanical executive bodies. The aim of research is to calculate the parameters and develop a design of electromechanical executive body based contactless direct current (DC) motor with improved weight and size characteristics. This is achieved by using a slim stator configured as a printed installation, with the length of the stator cylindrical shape reduced to tens of millimeters of 1,5–2 mm, which involves reducing the size of the power of the valve body, and thus the weight of the entire engine-flywheel. The subject of the research is complex operating characteristics managed by the engine speed – the flywheel provides in the development of the engine−flywheel based on contactless DC motor printed winding on a disk stator. The result of this work is the design of the engine flywheel based on contactless DC motor printed winding on a disk stator.
Electromechanical executive body, controlled by the engine speed - the flywheel, spacecraft, contactless DC motor printed winding, the angular momentum, moment of control.
References
  1. Alekseev K. B. Upravlenie kosmicheskimi letatel'nymi apparatami [Control of space aircraft]. Moscow, Mashinostroenie Pabl., 1974, 343 p.
  2. Chebotarev V. Е. Proektirovanie kosmicheskikh apparatov sistem informatsionnogo obespecheniya. Kn. 2: Vnutrennee proektirovanie kosmicheskogo apparata [Designing spacecraft information support systems: Vol. 2. The internal design of the spacecraft]. Krasnoyarsk, Sib. St. Aerospace. Univ Publ, 2005, 168 p.
  3. Zvezdin I. A. Malye kosmicheskie apparaty: perspektivy rynka [Small spacecraft: market prospects]. Available at:http://www.telenir.net/transport_i_aviacija/ vzlyot_2005_01/p75.php. (accessed 28.10.2013).
  4. Gladyshev G. N. Sistemy upravleniya kosmicheskimi apparatami [System control of spacecraft]. Tomsk, TPU Publ., 2000, 207 p.
  5. Belyanin L. N. Konstruirovanie pechatnogo uzla i pechatnoy platy. Raschet nadezhnosti [Designing of printed module and printed circuit card. Calculation of reliability]. Tomsk, TPU Publ., 2008, 80 p.
  6. Lund P. Pretsizionnye pechatnye platy: Konstruirovanie i proizvodstvo [Precision printed circuit card: Design and Production]. Transl. from Eng. Moscow, Energoatom Publ, 1983, 360 p.
  7. Kazanskiy V. М. Maloinertsionnye elektrodvigateli postoyannogo toka s pechatnoy obmotkoy na yakore [low−inertia direct−current motors with print winding on rotor]. Moscow, Energiya Publ., 1965, 96 p.
  8. Neodimovye magnity svoystva i kharakteristiki [Neodymium magnets are the properties and characteristics]. Available at: http://magnetline.ru/articles/ neodimovye-magnity.-svoystva-i-harakteristiki.html (accessed: 13.03.2014).
  9. Dmitriev V. S. Elektromekhanicheskie ispolnitel'nye organy sistem orientatsii kosmicheskikh apparatov [Electromechanical executive bodies of systems orientation of spacecraft]. Part 1. Tomsk, TPU Publ., 2013, 208 p.
  10. GOST 5949–75. Stal' sortovaya i kalibrovannaya korrozionnostoykaya, zharostoykaya i zharoprochnaya. Tekhnicheskie usloviya. [State Standard 5949-75. Sorted and gauged corrosion-resistant, heat-resistant and high-temperature steel. Specifications]. Moscow, Standartinform Publ., 1977, 23 p.
  11. Britova Y. А. Issledovanie vibratsionnykh kharakteristik elektrodvigateley–makhovikov sistem orientatsii kosmicheskikh apparatov [The study of vibration characteristics of motor flywheel systems orientation of spacecraft]. Tomsk, TPU Publ., 2012, 139 p.
  12. Kompleks programmnykh produktov dlya avtomatizatsii proektirovaniya [Complex software for design automation]. Available at: http://www.tflex.ru (accessed: 08.09.2013).
  13. Melexis. MLX90217 Documentation. Available at: http://www.melexis.com/Position-Speed-Sensors/ Speed-Sensors/MLX90217-3.aspx (accessed: 13.02.2014).
  14. OAO “NPTs Polyus” [Corporation “RPC Pole”]. Available at: http://polus.tomsknet.ru/?id=211 (accessed: 13.11.2014).
  15. Sputniks [Sputniks]. Available at: http://www. sputnix.ru/ru/products/microsatellites-systems/acs-actuators/ item/251-adc-wheels/sx_wheels_rus.pdf (accessed: 13.11. 2014).

Balandin Evgeniy Aleksandrovich – engineer, JSC “Information Satellite System” named after academician M. F. Reshetnev”. E-mail: error.balandina@yandex.ru

Balandina Tat’yana Nikolaevna – engineer, JSC “Information Satellite System” named after academician M. F. Reshetnev”. E-mail: error.balandina@yandex.ru