UDK 517.977.1
NUMERICAL ESTIMATIONS OF MAXIMUM DEVIATIONS FOR AIRCRAFT TRAJECTORIES IN THE ATMOSPHERE
A. N. Rogalyov [1]*, A. A. Rogalyov [2]
[1] Institute of Computational Modeling, Siberian Branch of Russian Academy of Sciences 50/44, Akadmegorodok, Krasnoyarsk, 660036, Russian Federation [2] Siberian Federal University, Institute of Space and Information Technologies 26, Kirenskogo Str., Krasnoyarsk, 660074, Russian Federation *E-mail: rogalyov@icm.krasn.ru
In this article we study guaranteed methods for solving differential equations systems with control actions and its application for problems of aircrafts trajectories maximum deviations estimating. The problem statement of maximum deviations estimating is caused by the necessity to evaluate reliability of complex nonlinear controlled systems that operate under the influence of perturbations. The example of such system is an aircraft: an airplane, a rocket, a spacecraft. We should emphasize the research of an airplane movement during an autoland approach among problems of maximum deviations estimating. This research gives an answer whether a violation of restrictions imposed on the kinematic parameters of an airplane touching down a runway is possible or not. The problems of limit deviations evaluating also include estimating of the possibility of an aircraft motion stability’s loss for a given time interval. The greatest difficulty in solving such problems arises in the case when flight conditions are not fixed, for example, when considering the descent into the atmosphere of a spacecraft orbiter. In this case the loss of stability criteria themselves are not formulated, if we do not confine ourselves to the simplest case of a linear system, for which the Routh-Hurwitz conditions can be used. Some threshold or critical value of one of the parameters of an airplane can serve as a simplistic criterion of stability loss. For example, the angle of attack or slip angle can be taken as such parameter. Reachable sets (collections of all the trajectories of controlled systems) make a figure in such problems. These sets are used in problems of guaranteed or minimax estimation of solutions of dynamical systems if external perturbations that influence on a system and observation errors are enclosed within a certain range (constrained by limitations). The analysis of works that estimate reachable sets indicates that the reliable estimation of reachable sets of controlled systems under uncertainty, if the right-hand sides of these systems depend nonlinearly on the control actions, is not always possible. Therefore the possibility of the guaranteed methods based on symbolic representation of solutions for reachable sets evaluation will be useful for specialists in control. The article presents the results of the application of the numerical methods based on the construction of symbolic formulas of solutions and evaluating all of its possible values.
maximum deviations, aircraft, critical values of parameters, guaranteed method of estimating, symbolical formula.
References

1. Kurzhanskiy A. B. Upravlenie i nablyudenie v usloviyakh neopredelennosti. [Control and Observation under Uncertainty]. Moscow, Nauka Publ., 1977, 390 p.

2. Chernousko F. L. Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem [Estimation of Phase State of Dynamic Systems]. Moscow, Nauka Publ., 1988, 320 p.

3. Chernousko F. L. State Estimation for Dynamic Systems. Boca Raton: CRC Press, 1994. 304 p.

4. Ovseevich A. I, Shmatko A. M. [Concerning the comparison of probabilitic and guaranteed approaches to the prediction of the phase state of dynamical systems]. Izvestiya Akademii Nauk. Teoriya i sistemy upravleniya. 2007, no. 4, p. 11–16 (In Russ.).

5. Chernousko F. L. [Ellipsoidal approximation of reachable sets of controlled linear systems with uncertain matrix]. Prikladnaya Matematika i Mekhanika. 1996, vol. 60, no. 6, p. 940–950 (In Russ.).

6. Kostousova E. K. [External and Internal Estimation of Reachable Sets Using Parallelotopes]. Vychislitel'nye Tekhnologii. 1998, vol. 3, no. 2, p. 11–20 (in Russ.).

7. Kurzhanskii A. B., Furasov B. D. [Problems of Guaranteed Identification of Bilinear Systems with Discrete Time]. Izvestiya Akademii Nauk. Teoriya i sistemy upravleniya. 2000, no. 4, p. 5–12 (in Russ.).

8. Kinev A. N., Rokityanskiy D. U., Chernous'ko F. L. [Ellipsoidal Estimations of Phase State of Linear Systems with Parametrical Perturbations and with Undefined Observations Matrix]. Izvestiya Akademii Nauk. Teoriya i sistemy upravleniya. 2002, no. 1, p. 5–13 (in Russ.).

9. Patsko B. V., Pyatko S. G., Fedotov A. A. [Three-dimension Reachable Sets of Nonlinear Controlled Systems]. Izvestiya Akademii Nauk. Teoriya i sistemy upravleniya. 2003, no. 3, p. 8–16 (in Russ.).

10. Kuz'min V. P., Yaroshevskiy V. A. Otsenka predel'nykh otkloneniy fazovykh koordinat dinamicheskoy sistemy pri sluchaynykh vozmushcheniyakh. [Estimation of Maximum Deviations of Dynamical System Phase Coordinates Subjected to Stochastic Perturbations]. Moscow, Nauka Publ., 1995, 298 p. (In Russ.).

11. Novikov V. A., Rogalyov A. N. [Construction of convergent upper and lower estimations of Solutions of Ordinary Differential Equations Systems]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. 1993, vol. 33, no. 2, p. 219–231 (in Russ.).

12. Rogalyov A. N. [Using Boundaries of Global Error for Guaranteed Estimates of Ordinary Differential Equations Solutions]. Vychislitel'nye tekhnologii. 2002, vol. 7, no. 4, p. 88–95 (in Russ.).

13. Rogalyov A. N. [Guaranteed Methods for Ordinary Differential Equations Solving Based on Symbolic Formulae Development]. Vychislitel'nye tekhnologii. 2003, vol. 8, no. 5, p. 102–116 (in Russ.).

14. Rogalyov A. N. [Inclusion of Sets of Differential Equations Solutions and Guaranteed Bbounds of Global Error]. Vychislitel'nye tekhnologii. 2003, vol. 8, no. 6, p. 80–94 (in Russ.).

15. Rogalyov A. N. [Boundaries of Solutions Sets of Systems of Ordinary Differential Equations with Interval Initial Data]. Vychislitel'nye tekhnologii. 2004, vol. 9, no. 1, p. 86–93 (in Russ.).

16. Rogalyov A. N. [Symbolic computations in guaranteed methods, executed on multiple processors]. Vestnik NGU. Seriya: Informatsionnye tekhnologii. 2006, vol. 4, no. 1, p. 56–62 (in Russ.).

17. Rogalyov A. N. Computation of reachable sets guaranteed bounds. Proceedings of the IASTED International Conferences on Automation, Control, and Information Technology – Control, Diagnostics, and Automation (ACIT - CDA 2010). ACTA Press, B6, Calgary, Canada. 2010, p. 132–139.

18. Rogalyov A. N. [Guaranteed Bounds and Reachable Sets Constructing for Nonlinear Controlled Systems]. Vestnik SibGAU. 2010, no. 5(31), p. 148–154 (in Russ.).

19. Rogalyov A. N. [Computing of Guaranteed Bounds of Controlled Systems Reachable Sets]. Avtometriya. 2011, vol. 47, no. 3, p. 100–112 (in Russ.).

20. Rogalyov A. N. Calculation of Guaranteed Boundaries of Reachable Sets of Controlled Systems. Optoelectronics, Instrumentation and Data Processing. Allerton Press. 2011, vol. 47, no. 3, p. 287–296.

21. Rogalyov A. N., Rogalyov A. A. Numerical Computations of Phase States Inclusions for Problems of Aircraft Displacement Inspection. Vestnik SibGAU. 2012, no. 1(41), p. 53–57 (in Russ.).

22. Kobjakov S. Ja. [Methods of Symbolic Analysis of Dynamical Sytems]. Avtomatika i telemekhanika. 2004, no. 4, p. 56–60 (in Russ.).

23. Neumaier A. Taylor forms – Use and limits. Reliable computing. 2003, vol. 9, no. 1, p. 43–79.

24. Eaves R. C., Saigal R. [Homotopies for computation of fixed points on unbounded regions]. Mathematical Programming. 1972, vol. 3, no. 2, p. 225–237.

25. Tyatyushkin A. I, Fedunov B. E. [Possible protection against attacking missiles rear hemisphere of the aircraft vertical maneuver]. Izvestija Akademii Nauk. Teoriya i Sistemy Upravleniya. 2006, no. 1, p. 125–132 (in Russ.).


Rogalyov Alexey Nikolaevich – Cand. Sc., Docent, senior researcher, Institute of Computational Modeling, SB RAS. E-mail: rogalyov@icm.krasn.ru

Rogalyov Alexander Alexeevich – postgraduate student, Institute of Space and Information Technologies, Siberian Federal University. E-mail: ran@akadem.ru