UDK 621
DEPENDENT FAILURES IN MULTIFUNCTIONAL ACS
P. A. Kuznetsov
Siberian State Technological University 82, Mira Av., Krasnoyarsk, 660049, Russian Federation E-mail: forubox@yandex.ru
The article discusses the interference of elements of the automated control system. We study the safety and survivability. Gradation failure is given. The consequences of failure cells and modules of the system, causing failures of other cells and modules, the possibility of preventing these failures are highlighted. A range of possible dependent failures is provided. It is shown that a possible source of danger can be as module failure, and failure of backup elements in these modules. It is postulated that the increase in the number of redundant elements at least does not reduce to zero the potential danger. The various logical structures of the compound elements in ACS are discussed. A typical structure of reliability of automated control system that performs several functions, the tree structure is shown. It is deduced that one system APCS performs several functions. One spacecraft often performs several functions. Also there are functions of the ACS which do not affect the operation. And to determine the reliability of the system we must determine which elements involved in performing any functions. It is necessary to determine the sequence of elements to perform a functional task. It is illustrated by the development of failures in multi-functional systems, the mutual influence of elements in them in case of simple linear and branched redundant structures. We consider the negative effects of redundancy. An example of calculating the reliability of the system with a parallel connection of elements into account and dependent failures caused by the elements is given. The conclusion of necessity of non-redundant methods to improve reliability and hazard prevention was made.
safety, failure, dependent failure.
References
  1. Avizhenis A. N., Lapri Zh. K. [Guarantee-able calculations: from the idea to realization in projects]. TIIER. 1986, vol. 5, p. 8–21 (In Russ.).
  2. Kurochkin Yu. A., Smirnov A. S., Stepanov V. A. Nadezhnost' i diagnostirovanie tsifrovykh ustroystv i sistem [Reliability and diagnostics of digital systems]. St.Petersburg, St.Petersburg University Publ., 1993, 320 p.
  3. Kovalev I. V. [Analysis of the problems in the study of the reliability of the software: multi-stage and architectural aspects]. Vestnik SibGAU. 2014, No. 3(55), p. 78–92 (In Russ.).
  4. Ryabinin I. A. Nadezhnost' i bezopasnost' strukturno-slozhnykh sistem [Reliability and safety of structural complex systems]. St.Petersburg, St.Petersburg University Publ., 2007, 276 p.
  5. Sugak E. V, Vasilenko N. V. Nadezhnost' tekhnicheskikh sistem. Uchebnoe posobie dlya vysshikh uchebnykh zavedeniy [Reliability of technical systems. Study guide]. Krasnoyarsk, NII SUVPT Publ., 2000, 608 p.
  6. Okhtilev M. Yu. Sokolov B. V. Intellektual'nye tekhnologii monitoringa i upravleniya strukturnoy dinamikoy slozhnykh tekhnicheskikh ob"ektov [Intelligent technologies for monitoring and management of the structural dynamics of complex technical objects]. Moscow, Nauka Publ. 2006, 410 p.
  7. Kovalev I. V., Kuznetsov P. A., Zelenkov P. V., Shaydurov V. V., Bakhmareva K. K. [To the question of the reliability of automated control systems with blocking protection modules]. Pribory. 2013, vol. 6, p. 20–24 (In Russ.).
  8. Kuznetsov P. A., Beschastnaya N. A., Bakhmareva K. K., Antamoshkin O. A., Antamoshkin A. N. [Modification of the Volkovich`s-Michalevi`c method to optimize costs in the synthesis of fault-tolerant information systems]. Vestnik SibGAU. 2012, No. 6(46), p. 97–100 (In Russ.).
  9. GOST R 22.10.01–2001. Bezopasnost' v chrezvychaynykh situatsiyakh. Otsenka ushcherba. Terminy i opredeleniya [State Standart R 22.10.01–2001. Safety in emergencies. Damage assessment. Terms and definitions.] (In Russ.) Available at: http://vsegost.com/ Catalog/64/6474.shtml (accessed 12.02.2015).
  10. Aleksandrovskaya L. N., Aronov I. Z., Kruglov V. I., Kuznetsov A. G., Patrakov N. N., Sholom A. M. Bezopasnost' i nadezhnost' tekhnicheskikh sistem. Uchebnoe posobie [Safety and reliability of technical systems. Study guide]. Moscow, Logos Publ., 2004, 280 p.
  11. GOST 27.002–89. Nadezhnost' v tekhnike. Osnovnye ponyatiya. Terminy i opredeleniya [State Standart 27.002–89. Reliability in the technology. Basic concepts. Terms and Definitions] (In Russ.) Available at: http://vsegost.com/Catalog/11/11290.shtml (accessed 12.02.2015).
  12. RF Federal Standards and Rules in the Field of Nuclear Energy NP-022-2000 “General provisions to ensure the safety of nuclear powered vessels” 27.09.2000 (In Russ.) Available at: http://base.consultant.ru/cons/ cgi/online.cgi?req=doc;base=EXP;n=424308 (accessed 12.05.2015).
  13. IAEA-TECDOC-probabilistic safety assessment, Vienna, Austria, 1992, 36 p. Available at http://www-pub.iaea.org/books/IAEABooks/908/Procedures-for-Conducting-Common-Cause-Failure-Analysis-in-Probabilistic-Safety-Assessment (accessed 12.02.2015).
  14. Rodionov M. G. Informatsionno-izmeritel'nye sistemy: teoriya sistem i sistemnyy analiz: uchebnoe posobie [Information-measuring system: systems theory and systems analysis: a study guide] Omsk, OmGU Publ., 2011, 83 p.
  15. Khoroshev A. N. Vvedenie v upravlenie proektirovaniem mekhanicheskikh sistem: Uchebnoe posobie. [Introduction to the management of designing mechanical systems: Study guide]. Belgorod, 1999, 372 p.
  16. Vasil'ev A. A. Elektricheskaya chast' stantsiy i podstantsiy Uchebnik dlya vuzov. [Electric part of stations and substations. Study guide for high schools]. Moscow, Energoatomizdat Pabl., 1991, 600 p.

Kuznetsov Petr Anatol’evich – assistant, Siberian State Technological University. E-mail: forubox@yandex.ru