UDK 621.6.09:534.01
VIBRATION AND PRECISION OF THE DETAILS MACHINING
E. V. Ramenskaja, Y. A. Filippov, D. V. Latuk
Siberian State Aerospace University named after academician M. F. Reshetnev 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russian Federation E-mail: lena@kraslan.ru
The results of theoretical and experimental researches of vibration processes during boring of the constructional steels stock are stated in this paper. The new design of the boring bar is offered with the purpose of high technology introduction in manufacture of the mechanical and space engineering products. The design of assembling boring bar reduces the vibration amplitude at the expense of the increased stiffness both amplified damping of cross and angular fluctuations. It is provided with displacement of the mass centre of bar to an edge of a replaceable hard alloy metal plate and filling of the "weighted" bar part by the powder raised density material. The rubber packing (soft and hard) provides regular viscosity. It promotes partial restriction of the flow density of the itinerant valence electrons thermo-EMF during cutting from the technological machine through the cutting tool on preparation or in other situations in the opposite direction and stimulates the resistance to cutting reduction. The internuclear interactions in the preparation material at cutting, which are estimated by size by chemical metal connection, do not exceed 90 kJ/mol. The experimental researches of vibration amplitudes and work ability of new boring bar in the process precision boring of a steel pipe (30HGSA) demonstrate reduction of vibrational acceleration amplitude in 3 times in comparison with a typical boring bar design and improvement of roughness – in 1,85 times. Partially the results of work are used at the base enterprise for production details for oil industry equipment.
vibration, technological machines, boring, alloy steel, molecular bonds, boring bar.
References
  1.  Freydenshteyn F., Meysi Zh. P, Meyki E. R. [Optimum Balancing of Combined Pitchyng and Yawing Moments in High-Speed Machinery]. Konstruirovanie i tekhnologiya mashinostroeniya. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1981, Vol. 103, No. 3, P. 9–15 (In Russ.).
  2. Kennati-Asibu E., Dornfeld D. A. [Quantitative Relationships for Acoustic Emission from Orthogonal Mettal Cutting]. Konstruirovanie i tekhnologiya mashinostroeniya. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1981, Vol. 103, No. 3, P. 152–163 (In Russ.).
  3. Le D. [The Nature of Chip Formation in Orthogonal Machining]. Teoreticheskie osnovy inzhenernykh raschetov. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1984, Vol. 106, No. 1, P. 10–17 (In Russ.).
  4. Ramenskaja E. V., Filippov Ju. A. Upravlenie vibraytsiej sredstv tekhnologicheskogo osnashhenija: monografija. [Control of vibration technical equipment: monograph]. Krasnoyarsk, SibGAU Publ., 2011, 172 p.
  5. Mikljaev P. G., Neshpor G. S., Kudrjashov V. G. Kinetika razrushenija [The kinetics of destruction]. Moscow, Metallurgija Publ., 1979, 279 p.
  6. Trikamo S. Zh., Louen Zh. Zh. [A New Concept for Force Balancing Machineg for Planar Linkages]. Konstruirovanie i tekhnologiya mashinostroeniya. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1981, Vol. 103, No. 3, P. 43–48 (In Russ.).
  7. Ramenskaja E. V., Filippov Ju. A., Amelchenko N. A. [The mechanism of generation and propagation of vibration оf the technological machines]. Vestnik SibGAU. 2012, No. 1 (41), P. 132–138 (In Russ.).
  8. Tokadzi K., Ando Z., Kodzima T. [Fatigue Crack retardation of Low Carbon Steel in Salt water]. Teoreticheskie osnovy inzhenernykh raschetov. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1984, Vol. 106, No. 1, P. 44–49 (In Russ.).
  9. Yang Zh. N., Donat R. S. [Statistics of Crack Growth of a SuperalloyUnder Sustained Load]. Teoreticheskie osnovy inzhenernykh raschetov. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1984, Vol. 106, No. 1, P. 81–86 (In Russ.).
  10. Suo L., Uayli E. B. [Complex Wavespeed and Hydraulic Transients in Viscoelastic Pipes]. Sovremennoe mashinostroenie Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1991, No. 5, P. 156–160 (In Russ.).
  11. Koulman N. V., Khodzh B. K,, Teylor R. P. [A Be-Evaluation of Schlichtings  Surface Roughness  Experiment]. Teoreticheskie osnovy inzhenernykh raschetov. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1984, Vol. 106, No. 1, P. 131–137 (In Russ.).
  12. Medison V. V., Pegashkin V. F., Golubev V. I. et al. [The increased resistance of the cutting tool by the method of electoisolation]. Tehnologija mashinostroenija. 2012, No. 10, P. 13–16 (In Russ.).
  13. Koyett Zh. P., Feyf K. R. [An Improved Formulation for Acoustic Eigenmode Extraction from Boundary Element Models]. Sovremennoe mashinostroenie. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1990, No. 12, P. 133–140 (In Russ.).
  14. Pirz A. D., Kil G. Zh. [Elastic Wave Propagation from Point Excitations on Thin-Walled Cylindrical Shells]. Sovremennoe mashinostroenie Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1990, No. 12, P. 140–147 (In Russ.).
  15. Uots D., Starki Zh. [Optimization of Rasponse Amplitudes Viscously Damped Structures]. Sovremennoe mashinostroenie. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, ASME. 1990, No. 12, P. 89–95 (In Russ.).
  16. Latjuk D. V., Ramenskaja E. V., Filippov Ju. A. Rastochnaja opravka. [Boring bar]. Patent na poleznuju model RU, no. 129439, 2013.

Ramenskaja Elena Vladimirovna – Cand. Sc., Docent of Technology of mechanical engineering department, Siberian State Aerospace University named after academician M. F. Reshetnev. E-mail: lena@kraslan.ru

Filippov Yuri Aleksandrovich – Dr. Sc.-Eng., Professor of Engineering technology department, Siberian State Aerospace University named after academician M. F. Reshetnev

Latuk Denis Valerievich – postgraduate student, Siberian State Aerospace University named after academician M. F. Reshetnev.