UDK 629.78.064:621.039.5
CONTAINER FOR TRANSPORTATION OF THE NUCLEAR ENERGY INSTALLATION OF A SPACE VEHICLE
V. V. Dvirnyi [1], G. V. Dvirnyi [2], G. G. Krushenko [1], [3]
[1] Siberian State Aerospace University named after academician M. F. Reshetnev 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russian Federation E-mail: dvirnyi@mail.ru [2] Siberian fire and rescue academy – branch of Saint-Petersburg university of State fire service of EMERCOM of Russia 1, Severnaya Av., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation E-mail: dg1802@mail.ru [3] Institute Computational Modeling SB RAS 50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation E-mail: genry@icm.krasn.ru
Nowadays the main power supply sources of artificial space satellites of the Earth and space vehicles (SV) are solar batteries (SB). However it is a source of power with nonlinear and unsteady internal resistance. Besides, their characteristics are to a great extent changed in operational process  SB generate maximum energy coming out of shadow of the Earth which decreases with battery warming-up. Further SB degrade by the influence of space ionizing radiation. At that there are also the difficulties with opening and supplying the demanded orientation. The most effective and stable source of energy can be the nuclear installations (NI). However the most important condition for their use is supplying of radiation safety by the storage at factory conditions and transportation wherefore a transporting container is used. The original construction of the container for NI SV, the most important element of which is a metallic rubber shock-absorber that is a metallic composite consisted of metallic spiral pressed into rubber, is presented in the article. Its destination is in a decreasing of a vibration amplitude that prevents the container from damages during transportation. The nanopowder of carbon was previously introduced into rubber for increasing the physical-mechanical and operational characteristics of shock-absorber.
space vehicles, solar batteries, nuclear installations, container, metallic-rubber shock-absorber, nanopowder of carbon.
References
  1. Chebotarev V. E., Kosenko V. E. Osnovy proektirovanija kosmicheskikh apparatov informatsionnogo obespechenija [Principles of design of spacecraft information support]. Krasnojarsk, SibGAU Publ., 2011. 488 p.
  2. Kazancev Ju. M., Gordeev K. G., Lekarev A. F. et al. [Current transformer with solar energy in the power system space appartition]. Izvestija Tomskogo politekhnicheskogo universiteta. 2011. vol. 319. no. 4.p. 148-153 (In Russ.).
  3. Gordijko S. V., Burdygov B. G. Sposob upravlenija orientatsiej solnechnoj batarei kosmicheskogo apparata s ogranicheniem ugla povorota solnechnoj batarei. [Method of control over spacecraft solar battery orientation with limitation of solar battery turn angle]. Patent RF no. 2509694, 2014.
  4. Koroteev A. S., Akimov V. N., Gafarov A. A. [Creation and prospects of application space nuclear power engineering in Russia]. Polet. 2008, no. 7, p. 3-15 (In Russ.).
  5.  Akatov A. A., Korjakovskij Ju. S. V kosmos - na Atomnoj tjage [In the space on a nuclear-powered]. Moscow, Informatsionnyj tsentr atomnoj otrasli Publ., 2012, 24 p.
  6. Karasev P. A. [Nuclear power installations in space]. Atomnaja strategija. 2007, no. 4, p. 16-17 (In Russ.).
  7. Schmidt G. SNAP overwiew. General background. February 7. 2011. 78 p. Available at: http://anstd. ans.org/NETS2011/Schmidt.pdf (accessed 14.07.2014).
  8. SRDIT has completed the testing of the control system reactor space NPPS. Available at: http://www. sdelanounas.ru/blogs/50847/ (accessed 14.07.2014).
  9. Moracho Ramirez M. J. Nuclear installation safety: International Atomic Energy Agency (IAEA) training programmes, materials and resources. Appendix 3. Infrastructure and Methodologies for the Justification of Nuclear Power Programmes, 2012. P. 919–933.
  10. Launius R. D. Reacting to nuclear power systems in space: American public protests over outer planetary probes since the 1980. Acta Astronautica, March–April 2014. Vol. 96. P. 188–200.
  11. Romanov A. V. Teorija kompleksnoj optimizatsii proektirovanija kosmicheskikh apparatov s jadernymi termojemissionnymi jenergeticheskimi ustanovkami [Theory of complex optimization of design of spacecraft with nuclear thermal emission power installations]. SPb., OOO “NPO “Professional” Publ., 2010, 474 p.
  12. US Patent 5,438,597 Container for transportation and storage of spent nuclear fuel Appl. № 131,971 Oct. 8, 1993. Int, Cl.6 G21F 5/012. Robert A. Lehnert, Robert D. Quinn, Steven E. Sisley, Brandon D. Thomas. Date of Patent August 1, 1995.
  13. Dvirnyj V. V., Dvirnyj G. V., Kozlov D. O. et al. [The use of nuclear power plants in space vehicles and transportation issues]. Trudy XIII Mezhdunarodnoj molodezhnoj nauchnoj konferentsii “Intellekt i nauka” [Proc. XIII Int. youth scientific conference “Intellect and science”]. Zheleznogorsk, 2013, p. 11-12 (In Russ.).
  14. Vorob'ev A. S., Galkin A. Ja., Dubinin A. A. et al. Teplovaja radiatsionnaja zashhita kosmicheskoj jadernoj jenergeticheskoj ustanovki [Thermal radiation protection, space nuclear power installation]. Patent RF, no. 2042984, 1995.
  15. Vvedenskij N. Ju., Pustobaev M. V. [Analysis of the testing of space technology to mechanical effects in USA, ES and RF]. Voprosy jelektromekhaniki. 2012, vol. 130, no. 5, p. 19-26 (In Russ.).
  16. Smirnov O. M., Krushenko G. G., Shhipko M. L. et al. [Benefication of the graphite ore from the Kureyka deposit]. Obogashhenie rud. 1999, no. 1-2, p. 19-22 (In Russ.).
  17. Preliminary Jameson cell flotation testing of Siberian graphite samples. Report prepared for B. Coope and Association Industrial Mineral Consulting. Department of Mineral Resources Engineering University Nottingham. 1993, 11 p.
  18. Boldyrev V. V. [Mechanochemistry and mechanical activation of solids]. Uspekhi khimii, 2006, vol. 75, no. 3, p. 203-216 (In Russ.).
  19. Butyagin P. Yu., Pavlichev I. K. Determination of energy yield mechanochemical reactions. Reactivity of Solids, August 1986, vol. 1, Issue 4, p. 361-372.
  20. Polubojarov V. A., Krushenko G. G., Cherepanov A. N. et al. [Experience using ultra-dispersed powder of natural cryptocrystalline of graphite in the rubber tread]. Materialy mezhregion. konf. [Proc. interregion. conf.]. Krasnoyarsk, 1996, p. 155-156 (In Russ.).
  21. Krushenko G. G., Shhipko M. L., Goncharov V. M. et al. [New possibilities for application of Kureisky graphite ore]. Obogashhenie rud. 1999, no. 5, p. 7-8 (In Russ.).
  22. Zhukov M. F., Cherskij I. N., Krushenko G. G.et al. Uprochnenie metallicheskikh, polimernykh i jelastomernykh materialov ul'tradispersnymi poroshkami plazmohimicheskogo sinteza [Hardening of metallic and polymeric and elastomeric materials of ultradispersed powders of plasmachemical synthesis]. Novosibirsk, Nauka Publ., 1999, 312 p.
  23. Zubov V. I. About the peculiarities of thermodynamics ultradispersed systems [Ob osobennostjakh termodinamiki ul'tradispersnykh sistem. Fizikokhimija ul'tradispersnyh sistem] Trudy IV AllRussian conf. Moscow, 1998, p. 23-26 (In Russ.).
  24. Toughening at nanoscale makes plastics suitable for aircraft use. Materials Today, 2000. Issue 3. P. 8.
  25. NaBond Technologies Co., Ltd. HONG KONG (also knwon as 納邦技術有限公司). Available at: http://www.nabond.com/contact.htm (accessed 14.07.2014).
  26. Almaslow A. et al. Effects of epoxidized natural rubber–alumina nanoparticles (ENRAN) composites in semi-metallic brake friction materials. Wear. April–May 2013. Vol. 302, Iss. 1–2, p. 1392-1396.

Dvirny Valery Vasilevich – Dr. Sc.-Eng., Professor, JSC “Information satellite systems” named after academician M. F. Reshetnev”. E-mail: dvirnyi@iss-reshetnev.ru

Dvirny Guriy Valeryevich – Cand. Sc.-Eng., JSC “Information satellite systems” named after academician M. F. Reshetnev”. E-mail: dg1802@mail.ru

Krushenko Genry Gavrilovich – Dr. Sc., Professor, the chief research officer of Institute of Computer Modeling SB RAS. E-mail: genry@icm.krasn.ru