UDK 629.78.018.3:536.24
THE RESEARCH OF EFFECTIVE THERMAL CONDUCTIVITY COEFFICIENT EFFECT ON THE TEMPERATURE FIELD OF REFLECTOR
O. V. Burova [1], E. V. Romankov [1], I. N. Tsivilev [1], A. V. Minakov [2]
[1] JSC "Information satellite systems” named after academician M. F. Reshetnev" 52, Lenin str., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation [2] Siberian Federal University 79, Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation E-mail: ovburime@yandex.ru
Contemporary satellite communications require the large-dimensioned antennas with high precision of the reflecting surface. They shall be light, robust and temperature resistant. The unevenness of the temperature field in an antenna can result in the temperature deformations of the reflecting surface and deterioration of the transmitted signal. The temperature influence on antennas and reflectors shall be determined during the design phase. This research examines the reflector accommodated on the telecommunication satellite which operates on the geostationary orbit. The reflector is a three-ply sandwich panel which consists of two skins and a honeycomb core. The heat-transfer properties of the reflector sandwich panel as well as carbon fiber composites and honeycomb core can vary significantly. For the purpose of the most accurate calculations during the temperature analysis phase an engineer has to find the anisotropic thermal conductivity coefficient of the carbon fiber composites and honeycomb core by applying the mathematical simulation. The heat-transfer properties of such materials are often unknown during the temperature analysis phase. The necessity to determine the properties of the reflector materials is confirmed by performed calculations. The basic equations for thermal equilibrium of the spacecraft and its components were reviewed. The thermal mathematical model was developed for the reflector with overall dimensions of 3.6 m×2 m. The estimate of the reflector materials conductivity and heat-transfer coefficient effect on the maximum and minimum diurnal temperatures and maximum temperature difference was made. The significant influence of the conductivity and heat-transfer coefficients on temperature difference in the reflector was shown.
large-dimensioned reflector, carbon fiber-reinforced plastic, thermal conductivity, the heat balance of the spacecraft.
References
  1.   Joseph A. Angelo, Jr. Space and astronomy handbook. Revised Edition/ – Facts On File, Inc., 2009, 342 p. ISBN 978-0-8160-7388-7.
  2. Spravochnik po kompozitsionnym materialam. V 2 kn. Kn. 1. [Handbook of composites. Book 1. Ed. J. Lubin]. Moscow, Mashinosstroenie Publ., 1988, 448 p. ISBN 5-217-00225-5.
  3. Spravochnik po kompozitsionnym materialam. V 2 kn. Kn. 1. [Handbook of composites. Book 1. Ed. J. Lubin]. Moscow, Mashinosstroenie Publ., 1988, 584 p. ISBN 5-217-00000-0.
  4. Komarova T. V. Poluchenie uglerodnykh materialov [Preparation of Carbon Materials]. Moscow, 2001, 95 p. ISBN 5-7237-0266-6.
  5. Malozemov V. V. Teplovoy rezhim kosmicheskikh apparatov. [Thermal mode of spacecraft]. Moscow, Mashinosstroenie Publ., 1980, 232 p.
  6. Mukhachev G. A., Shchukin V. K. Termodinamika i teploperedacha [Thermodynamics and Heat Transfer]. Moscow, Vyssh. shk. Publ., 1991, 480 p.
  7. Yudaev B. N. Teploperedacha. Uchebnik dlya vtuzov [Heat transfer. Textbook for Technical Schools]. Moscow, Vyssh. shk. Publ., 1973, 360 p.
  8. Peter Fortescue, Graham Swinerd, John Stark. Spacecraft systems engineering. Fourth Edition. John Wiley & Sons, Ltd., 2011. 691 p. ISBN 978-0-470-75012-4 (hardback).
  9. Kuvyrkin G. N. Teploprovodnost' odnonapravlennogo voloknistogo kompozita [Thermal conductivity of unidirectional fiber composite]. Journal of Engineering Science and Innovation, 2013, vol. 08 (In Russ.). Available at: http://engjournal.ru/catalog/ mathmodel/material/889.html.
  10.  Zarubin V. S., Zarubin S. V., Kuvyrkin G. N. [Mathematical simulation of heat transfer in unidirectional fiber composite]. Electronic scientific and technical journal: Science and Education, 2014, vol. 01., p. 270–281 (In Russ.). Available at: http://technomag. bmstu.ru/doc/657262.html. Doi: 10.7463/ 0114.0657262.
  11. Zarubin V. S., Kuvyrkin G. N., Savelyeva I. Yu. [Evaluation of effective thermal conductinity of unidirectional fiber composites by the method of self-consistency]. Electronic scientific and technical journal: Science and Education, 2013, vol. 11, p. 519–532 (In Russ.). Available at: http://technomag.bmstu.ru/ doc/622927.html. Doi: 10.7463/1113.0622927.
  12. Zarubin V. S., Kuvyrkin G. N. [Thermal conductivity of the textured composite with anisitropic inclusions in the form of ellipsoids of rotation]. Electronic scientific and technical journal: Science and Education, 2013, vol. 06, p. 365–378 (In Russ.). Available at: http://technomag.bmstu.ru/doc/569312.html. Doi: 10.7463/ 0613.0569312.
  13. Zarubin V. S., Kuvyrkin G. N., Savelyeva I. Yu. [Comparative analysis of estimations of heat conduction of a composite with ball inclusions]. Electronic scientific and technical journal: Science and Education, 2013, vol. 07, p. 299–318 (In Russ.). Available at: http:// technomag.bmstu.ru/doc/569319.html. Doi: 10.7463/0713. 0569319.
  14. Zarubin V. S., Kuvyrkin G. N. [Effective thermal conductivity coefficient of composite with anisotropic ellipsoidal inclusions]. Electronic scientific and technical journal: Science and Education, 2013, vol. 04., pp. 311–320 (In Russ.). Available at: http://technomag. bmstu.ru/en/doc/541050.html. Doi: 10.7463/0413.0541050.
  15. Zarubin V. S., Kuvyrkin G. N. [Comparative analysis of estimations of polycrystalline materials effective thermal conductivity coefficient]. Electronic scientific and technical journal: Science and Education, 2013, vol. 03., pp. 313–328 (In Russ.). Available at: http://technomag.edu.ru/doc/541029.html. Doi: 10.7463/ 0313.0541029.  

Burova Olga Vladimirovna – engineer, JSC “Information satellite systems” named after academician M. F. Reshetnev”. E-mail: ovburime@yandex.ru

Romankov Evgeniy Vladimirovich – engineer, JSC “Information satellite systems” named after academician M. F. Reshetnev”. E-mail: romajohn@yandex.ru

Tsivilev Ivan Nikolaevich – engineer, JSC “Information satellite systems” named after academician M. F. Reshetnev”. E-mail: tsivilevi@gmail.com

Minakov Andrey Viktorovich – Cand. Sc., Docent, Siberian Federal University. E-mail: tov-andrey@yandex.ru