UDK 521.35; 523.628.4
DETERMINATION OF THE TRAJECTORY OF MOTION OF CELESTIAL BODIES IN THE EARTH'S ATMOSPHERE
Yu. S. Bondarenko, Yu. D. Medvedev
Institute of Applied Astronomy of Russian Academy of Sciences 10, Kutuzova nab., St. Petersburg, 191187, Russian Federation E-mail: bondarenko@ipa.nw.ru
The authors have developed and realized the method, allowing to determine the trajectory of motion of celestial bodies in the Earth’s atmosphere, to determine the parameters of heliocentric orbit of celestial bodies prior to its entry into the atmosphere, as well as to estimate major factors of damage due the blast wave. The method researches several scenarios due to the passage of the object in the Earth’s atmosphere. In case the object passed through the atmosphere, without colliding with the Earth, the moments of an entrance and exit of a body from the Earth’s atmosphere are determined. The object can collide with the Earth without breakup. In this case, the differential equations are integrated until the celestial body reaches the Earth’s surface. It was assumed that the object burns in the atmosphere, if its radius becomes less than 1 cm. The case when object breaks up during the motion and only the fragments reach the Earth’s surface was considered separately. The developed method has been implemented in the software package. One of the advantages of the package is the ability to save the results of calculations in the .kml format, allowing to display three-dimensional geospatial data in the “Google Earth” as well as two-dimensional data in “Google” maps. In our case these data are the flight trajectory and its projection to the Earth’s surface, the places of meteorite break up and air burst, the impact areas of the fragments, the overpressure areas due the blast wave, as well as other useful information. Using this method the motion of Chelyabinsk and 2008 TC3 meteorites were simulated. It was shown that heliocentric orbital elements of the Chelyabinsk and 2008 TC3 meteorites before entering the Earth’s atmosphere calculated using the developed software are close to the parameters obtained by other authors, the trajectory parameters are in good agreement with the initial data within their accuracy. Estimated impact areas of meteorites fragments are only in few kilometers from the recovered one. The overpressure areas due the blast wave in case of "Chelyabinsk" meteorite coincide with the real data.
celestial body, asteroid, meteorite, heliocentric orbit, trajectory of motion, Earth’s atmosphere, air blast, blast wave, impact area.
References
  1. Aksenov E. P. Teorija dvizhenija iskusstvennykh sputnikov Zemli. [Theory of the motion of the Earth's artificial satellites]. Moscow, Nauka Publ., 1977, 360 p.
  2. Svetsov V. V., Nemtchinov I. V., Disintegration of Large Meteoroids in Earth’s Atmosphere: Theoretical Models. Icarus, 1995, vol. 116, p. 131–153.
  3. Passey Q. R., Melosh H. J. Effects of atmospheric breakup on crater field formation. Icarus 1989, vol. 42, p. 211–233.
  4. Ivanov B. A., Deniem D., Neukum G. Implementation of dynamic strength models into 2D hydrocodes: Applications for atmospheric breakup and impact cratering. International Journal of Impact Engineering, 1997, p. 411–430.
  5. Chyba C. F., Thomas P. J., Zahnle K. J. The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid. Nature, 1993, p. 40–44.
  6. Andreev S. G., Babkin A.V . Fizika vzryva. [The physics of the explosion]. Vol. 1. Moscow, FIZMATLIT Publ., 2002, 832 p.
  7. Atamanjuk V. G., Shirshev L. G., Akimov N. I. Grazhdanskaja oborona: Uchebnik dlja vuzov. [Civil defense: Textbook for Universities]. Moscow, Vysshaya shkola Publ., 1986, 207 p.
  8. Google. Available at: http://www.google.com/ earth/ (accessed: 15.07.2014).
  9. NASA/JPL. Available at: http://neo.jpl.nasa.gov/ news/2008tc3.html/ (accessed: 15.07.2014).
  10. Muawia H. Shaddad, Peter Jenniskens et. al. The recovery of asteroid 2008 TC3. Meteoritics & Planetary Science, 2010, P. 1–33.
  11. Bondarenko Yu. S., Vavilov D. E., Medvedev Yu. D. [Method for the determination of the orbits of small bodies of the solar system, based on the enumeration of orbital planes]. Astronomicheskij Vestnik. 2014, vol. 48, no 3, p. 229–233. (In Russ.)
  12. JPL Solar System Dynamics, 2014, SPK-ID: 3430291. Available at: http://ssd.jpl.nasa.gov/ (accessed: 15.07.2014).
  13. Pit'eva E. V. Fundamental'nye natsional'nye jefemeridy planet i Luny (EPM) Instituta prikladnoj astronomii RAN: dinamicheskaja model', parametry, tochnost' [Fundamental national ephemeris of planets and the moon (EPM) of the Institute of Applied Astronomy of the Russian Academy of Sciences: a dynamic model parameters, accuracy] St. Petersburg, Nauka Publ., Proc. of IAA RAS., 2012, vol. 23, p. 364–367. (In Russ.).
  14. U. S. Standard Atmosphere, 1976, U. S. Government Printing Office, Washington, D.C., 1976.
  15. Groten, E. Report of the IAG. Special Commission SC3, Fundamental Constants, XXII, 1999, IAG General Assembly.
  16. NOAA. Available at: http://www.nnvl.noaa.gov/ MediaDetail2.php?MediaID=1290&MediaTypeID=1/ (accessed: 15.07.2014).
  17. NASA/JPL. Available at: http://neo.jpl.nasa.gov/ news/fireball_130301.html/ (accessed: 15.07.2014).
  18. Zuluaga J. I., Ferrin I., Geens S., The orbit of the Chelyabinsk event impactor as reconstructed from amateur and public footage, 2013, arXiv:1303, 1796.
  19. Kohout T. et al. Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite – Insight into shock induced changes in asteroid regoliths. Icarus, 2014, vol. 228, p. 78–85.
  20. Central Bureau for Astronomical Telegrams, IAU. Electronic Telegram No. 3423: Trajectory and Orbit of the Chelyabinsk Superbolide, 2013 Available at: http://www.icq.eps.harvard.edu/CBET3423.html/ (accessed: 15.07.2014).
  21. Emel'janenko V. V., Popova O. P., Chugaj N. N. i dr. [Astronomical and physical aspects of the Chelyabinsk event February 15, 2013] Astronomicheskij Vestnik. 2013, vol. 47, no 4, p. 262–277 (In Russ.).
  22. Golubev A. V. [The main characteristics of the motion of the meteoroid at loss Chelyabinsk meteor shower 15 February 2013] Materialy konferentsii ”Asteroidy i komety. Cheljabinskoe sobytie i izuchenie padenija meteorita v ozero Chebarkul'” [Proceedings of the conference “Asteroids and comets. Chelyabinsk event and the study of meteorite falling into the lake Chebarkul”]. 2013, p. 70 (In Russ.).
  23. Bondarenko Ju. S. [Halley – electronic ephemeris] Izvestija Glavnoj astronomicheskoj observatorii v Pulkove. Trudy vserossijskoj astrometricheskoj konferencii “Pulkovo-2012”. [Proceedings of the Main Astronomical Observatory at Pulkovo. Proceedings of the All-Russian Conference astrometric “Pulkovo-2012”]. St. Petersburg, 2013, vol. 220, p. 169–172 (In Russ.).
  24. URA.RU, Meteorit “Cheljabinsk” dostavili v Kraevedcheskij muzej. [Meteorite “Chelyabinsk” was taken to the Museum of Local History]. (In Russ.). Available at: http://ura.ru/content/chel/17-10-2013/news/ 1052167381.html (accessed: 15.07.2014).
  25. Gazeta.Ru, Meteorit ne chrezvychajnyj [Meteorite is not an emergency]. (In Russ.). Available at: http://www.gazeta.ru/social/2013/03/05/5000389.shtml/ (accessed: 15.07.2014).

Bondarenko Juri Sergeevich – Cand. Sc., Senior researcher, Institute of Applied Astronomy RAS. E-mail: bondarenko@ipa.nw.ru

Medvedev Yuri Dmitrijevich – Dr. Sc., Professor, head of the laboratory, Institute of Applied Astronomy RAS. E-mail: bondarenko@ipa.nw.ru