UDK 620.1
DETERMINATION OF THE PHYSICO-MECHANICAL PROPERTIES OF THE PROTECTIVE OXIDE SCALE BY NANO-INDENTATION
N. V. Suhodoeva [1], E. N. Fedorova [1, 2], V. Turq [3], D. Monceau [2], D. Oquab [2]
[1] Polytechnic Institute of Siberian Federal University 26, Kirensky st., 660074 Krasnoyarsk, Russia [2] Université de Toulouse, Institut Carnot CIRIMAT, ENSIACET BP-44362, allée Emile Monso, 31030 Toulouse cedex-4, France 3 Université de Toulouse, Institut Carnot CIRIMAT, Université Paul Sabatier 118, route de Narbonne, 31062 Toulouse cedex 9, France
Nano-indentation test was used to determine the hardness and the Young’s modulus of the thermally grown oxide formed during the high temperature (1100 C) isothermal oxidation of single crystal Ni-based superalloy. Multiple nano-indentation tests at different loads were performed on the polished cross-section and on the surface of oxide scale. The measured values of Young's modulus were EIT = 320 GPa, and EIT = 256 GPa using the cross-section indentation and the indentation normal to the surface of oxide scale correspondently. The effect of applied load on the measured values was observed. The measured values of Young's modulus were used to determine the values of the work of adhesion of metal/oxide interface.
Ni-based superalloys, oxidation, oxide scale, nano-indentation test, hardness, Young’s modulus, work of adhesion.
References

1. Bernard O., Amiri G., Haut C., Feltz B., Huntz A. M., Andrieux M. Mechanical and microstructural characterisation of oxide films damage. Materials Science and Engineering A. 2002. Vol. 335, № 1, 2. Р. 32–42.

2. Bamba G., Wouters Y., Galerie A., Charlot F., Dellali A. Thermal oxidation kinetics and oxide scale adhesion of Fe–15Cr alloys as a function of their silicon content. Acta Materialia. 2006. Vol. 54, № 15. Р. 3917–3922.

3. Huang Z., Suo Z., Xu G., He J., Prevost J.H., Sukumar N. Initiation and arrest of an interfacial crack in a four-point bend test. Engineering Fracture Mechanics. 2005. Vol. 72, № 17. Р. 2584–2601.

4. Théry P.-Y., Poulain M., Dupeux M., Braccini M., Adhesion energy of a YPSZ EB-PVD layer in two thermal barrier coating systems. Surface & Coatings Technology. 2007. Vol. 202, № 4–7. Р. 648–652.

5. Bull S. J., Berasetegui E. G. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribology International. 2006. Vol. 39,
№ 2. Р. 99–114.

6. Attar F., Johannesson T., Adhesion evaluation of thin ceramic coatings on tool steel using the scratch testing technique. Surface and Coatings Technology. 1996. Vol. 78, № 1-3. Р. 87–102.

7. Measurement of interfacial shear mechanical properties in thermal barrier coating systems by a barb pullout method. Scripta Materialia. 2005. Vol. 53, № 9. Р. 1043–1048.

8. Ichikawa Y., Barradas S., Borit F., Guipont V., Jeandin M., Nivard M., Berthe L., Ogawa K., Shoji T. Evaluation of adhesive strength of thermal-sprayed hydroxyapatite coatings using the laser shock adhesion test (LASAT). Materials Transactions. 2007. Vol. 48,
№ 4. Р. 793–798.

9. Mao W. G., Dai C. Y., Zhou Y. C., Liu Q. X. An experimental investigation on thermo-mechanical buckling delamination failure characteristic of air plasma sprayed thermal barrier coatings. Surface & Coatings Technology. 2007. Vol. 201, № 14. Р. 6217–6227.

10. Begley M. R., Mumm D. R., Evans A. G., Hutchinson J. W. Analysis of a wedge impression test for measuring the interface toughness between films/coatings and ductile substrates. Acta Materialia. 2000. Vol. 48,
№ 12. Р. 3211–3220.

11. Carling K. M., Carter E. A. Effects of segregating elements on the adhesive strength and structure of the a-Al2O3/b-NiAl interface. Acta Materialia. 2007. Vol. 55, № 8. Р. 2791–2803.

12. Fedorova E., Monceau D., Oquab D., Popov A. Characterisation of oxide scale adherence after the high temperature oxidation of nickel-based superalloys. Materials at high temperatures. 2012. Vol. 29, № 3.
Р. 243–248.

13. Golovin Yu. A. Nanoindentirovaniye i yego vozmozhnosti ( Moscow, Mashinostroyeniye Publ., 2009, 312 p.

14. Kavaleyro A. Nanostrukturnyye pokrytiya ( ). Moscow, Tekhnosfera Publ., 2011. 752 p.

15. Zhao X., Xiao P. Determination of mechanical properties of thermally grown oxide on Fecralloy by nano-indentation. Thin Solid Films. 2007. Vol. 515,
№ 23. Р. 8393–8401.

16. Rico A., Gómez-García J., Múnez C.J., Poza P., Utrilla V. Mechanical properties of thermal barrier
coatings after isothermal oxidation. Depth sensing indentation analysis. Surface & Coatings Technology. 2009. Vol. 203, № 16. Р. 2307–2314.

17. Caron P., Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerospace Science and Technology. 1999. Vol. 3, № 8. Р. 513–523.

18. Schutze M. Protective Oxide Scales and Their Breakdown. The Institute of Corrosion and Wiley Series on Corrosion and Protection, 2006. 165 p.

19. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Mat. Res. 1992. Vol. 7, № 6. Р. 1564–1583.

20. Nix W. D., Gao H., Mech J. Indentation size effects in crystalline materials: a law for strain gradient plasticity. Mechanics and Physics of Solids. 1998.
Vol. 46, № 3. Р. 411–425.

21. Golovin Y. I. Nanoindentation and mechanical properties of solids in the submicron scale, near-surface layers and thin films. Physics of the Solid State. 2008. Vol. 50, № 12. Р. 2113–2142.

 


Sukhodoeva Nadezhda Vyacheslavovna – postgraduate student, the Department of Applied Mechanics, Polytechnic Institute of Siberian Federal University. Е-mail: me-zon@list.ru

Fedorova Elena Nikolaevna – Candidate of Engineering Science, associate professor, Department of Applied Mechanics, Polytechnic Institute of Siberian Federal University. Е-mail: fedorova.elena.85@gmail.com

Turq Viviane – Candidate of Engineering Science, research instructor (Enseignant-Chercheur), Université de Toulouse, Institut Carnot CIRIMAT, Université Paul Sabatier. Е-mail: turq@chimie.ups-tlse.fr

Monceau Daniel – Doctor of Engineering Science, director of the research centre CNRS (Directeur de Recherche CNRS), Université de Toulouse, Institut Carnot CIRIMAT. Е-mail: daniel.monceau@ensiacet.fr

Oquab Djar – Candidate of Engineering Science, engineer of the national centre of scientific researches (Ingénieur de Recherche), Université de Toulouse, Institut Carnot CIRIMAT. Е-mail: djar.oquab@ensiacet.fr