UDK 539.374
THE TECHNOLOGIES AND MECHANISM OF FORMING THE FOAM METALS AND ITS USE ON AIRCRAFTS II
G. G. Krushenko
Institute computational modeling SB RAS 50/44, Academgorodok, Krasnoyarsk, 660036, Russian Federation Siberian State Aerospace University named after academician M. F. Reshetnev 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russian Federation Е-mail: genry@icm.krasn.ru
The technologies and mechanism of producing and forming the foam products of different metals and alloys, including contemporary technologies with the methods of foundry and powder metallurgy and also by straight blowing up gaseous matters in a melt are described. The characteristics of some foam metals and its advantages to compact materials and also its use at the aerospace and other branches of industry are given. Foam metals and alloys can be manufactured by two main methods: casting and powder metallurgy. Metallic foams applications are increasing on those fields such as automotive or aerospace industries due to the weight reduction. Several routes are used to achieve metallic foams: deposition, melting and powder metallurgy. On some of these processes, foam manufacturing involves a gas into a melted metal which leads to a light metallic structure. In recent years, some research has been developed on the deformation behavior of metal foams.
technologies and mechanism forming foam metals, use foam metals on aircrafts.
References

1. Krushenko G. G. Vestnik SibGAU, 2012, no. 3 (43), p. 124−126.

2. Banhart J. Manufacturing routes for metallic foams. J. of metals. 2000. Vol. 52. P. 22−27.

3. Saenz E., Baranda P. S., Bonhomme J. Porous and cellular materials for structural applications. In: Schwartz DS, Shih DS, Evans AG, WadleyHNG, editors. MRS Symp. Proc. 1998. Vol. 521. P. 83.

4. Tang H. P. et al. Fractal dimension of pore-structure of porous metal materials made by stainless steel powder. Powder Technology, February 2012. Vol. 217.
P. 383−387.

5. Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 2001. Vol. 46. P. 559−632.

6. Cambronero L. E. G. et al. Manufacturing of Al-Mg-Si alloy foam using calcium carbonate as foaming agent. J. of materials processing technology. 2009. Vol. 209, Issue 4. P. 1803−1809.

7. Kovacik J., Simancik F. Comparison of zinc and aluminium foam behaviour. Kovove materially. 2004. Vol. 42, no. 2. P. 79−90.

8. Reglero J. A. et. al. Aluminium foams as a filler for leading edges: Improvements in the mechanical behavior under bird strike impact tests. Materials and design. 2011. Vol. 32, no. 2. P. 907−910.

9. Patent US 2,434,775. 7 Claims. (Cl. 75-20). Application May 8, 1943. Serial No 486,209. Process for making foamlike mass of metal / Benjamin Sosnick. US Patent Office. Patented January 20, 1948.

10. Patent US 1,252,887. Application filed August 27, 1917. Serial No 188,473. Process making alloys / Henry L. Doherty. US Patent Office. Patented January 8, 1918.

11. Al'tman M. B., Merkulov V. V., Minaev B. F., Golovchanskij B. V., Borok B .A. Ustrojstvo dlja poluchenija penoaljuminija iz aljuminievyh splavov [A device for producing foam aluminum , aluminum alloy] A. p. USSR number 125682. Class 40b/330, 49/3, stated. 05.11.1959, Bull. no. 2. 1960 .

12. Arbuzova L. A., Bondarev B. I., Rozhkov A. A., Shmakov Ju. V., Lashkov N. I., Talalaev V. D. Sposob poluchenija poristyh polufabrikatov iz poroshkov aljuminievyh splavov [A method of producing porous semi-finished aluminum alloy powder]. Patent RF no. 2085339 S1 MPK6 B22F3/11, B22F3/18, 1997.

13. Banhart J., Baumeister J. Deformation characteristics of metal foams. J. of materials sciences, 1998. Vol. 33, no. 5. P. 1431−1440.

14. Asholt P. Metal foams and porous metal structures. In: Banhart J., Ashby M.F, Fleck N.A., editors. Intern. Conf., Germany: MIT Press-Verlag, 14–16. June 1999. P. 133.

15. Kopanidis A., Theodorakakos A., Gavaises E., Bouris D. 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam. International Journal of Heat and Mass Transfer, May 2010. Vol. 53. Issues 11–12,
P. 2539−2550.

16. Zhao C. Y. Review on thermal transport in high porosity cellular metal foams with open cells. International Journal of Heat and Mass Transfer, June 2012. Vol. 55, Issues 13−14. P. 3618−3632.

17. Avdeenko A. M., Krupin Ju. A. Tjazheloe mashinostroenie. 2008, no. 7. P. 18−21.

18. Ershov M. Ju., Lepeshkin I. A. Avtomobil'naja promyshlennost'. 2010, no. 10. P. 36−39.

19. Krushenko G. G. Nanotehnika. 2012, no. 4.
P. 77−79.

20. Bjakova A. V. et al. Adgezija rasplavov i pajka materialov. 2009, no. 42. P. 5−22.

21. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik. 1905. B. 322 (8): S. 549−560.

22. Krushenko G. G. Nanotehnika, 2012. № 2.
Р. 93−97.

23. Saburov V. P., Cherepanov A. N., Zhukov M. F., Krushenko G. G.. Plazmohimicheskij sintez ul'tradispersnyh poroshkov i ih primenenie dlja modificirovanija metallov i splavov. Novosibirsk, Nauka. Sibirskaja izdatel'skaja firma RAN, 1995, 344 p.

24. Karepina E. E., Godymchuk A. Ju. [Sedimentation stability of oxide nanoparticles nonspherical]. II Vseros. nauchno-tehnich. konf. molodyh uchenyh, aspirantov i studentov s mezhdunarodnym uchastiem “Vysokie tehnologii v sovremennoj nauke i tehnike” VTSNT-2013 [I All-Russia. Scientific-Technical. conf. young scientists and students with international participation “High technology in modern science and technology” VTSNT 2013]. Tomsk, Nacional'nyj issledovatel'skij Tomskij politehnicheskij universitet, 2013. Vol. 1. P. 189−192.

25. Gibson, L. J. and Ashby, M. F. Cellular Solids: Structure and Properties, Pergamon Press, Oxford. 1988. 357 p.

26. Schwingel D. et. al. Aluminium foam sandwich structures for space applications. Acta Astronautica. 2007. Vol. 61. Issue 1−6. P. 326−330.

27. Pogibenko A. G. et al. Sposob soedinenija zagotovok iz penoaljuminija [Way to connect pieces of foam aluminum]. Patent RF no. 2202454 S2 MPK7 V23K9/23 V23K103:10, 2003.

28. Patent US 707,892. Application filed February 12, 1902. Serial No. 93,797 (No specimens.) Art of treating starch material / Alexander P. Anderson. US Patent Office. Patented August 26, 1902.

29. Patent US 2,082,313. 4 Claims (Cl. 99-138). Application June 18, 1936. Serial No 86,002. In Great Britain July 11, 1935. Process for manufacturing articles of food or confectionary / John W. Todd. US Patent Office. Patented June 1, 1937.

30. Patent US 2,082,313. 4 Claims (Cl. 99-138). Application June 18, 1936. Serial No 86,002. In Great Britain July 11, 1935. Process for manufacturing articles of food or confectionary / John William Todd. United States Patent Office. Patented June 1, 1937.


Krushenko Genry Gavrilovich – Doctor of Engineering Science, professor of the Department of Aircraft engines, Siberian State Aerospace University named after academician M. F. Reshetnev, chief researcher of the Institute of Computational Modeling of Siberian branch of Russian Academy of Sciences. E-mail: genry@icm.krasn.ru