UDK 628.16.087
THE ELECTRIC FIELD INTENSITY INFLUENCE ON WATER CLEANING FROM METAL IONS AT THE INTERPHASE BOUNDARY
I. Ya. Shestakov, O. V. Raeva*
Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation *Е-mail: O.V.Raeva@yandex.ru
In the manufacture an aircraft parts electroplating processes are used which result in the contamination of waste-water metal ions. Currently there is a large number of water and aqueous solutions purification methods - mechanical, chemical, electrical, physical, biological, combined method, etc. For example, for water purification from iron defend-ing from copper, nickel, chromium (VI) is used effectively. Also electro-coagulation, ion exchange technology, biologi-cal treatment, etc are widely used. Waste water of electroplating industry contains a collection of different metal ions at concentrations of 0.5 mg/l or less. Research on integrated water purification from metal ions under these conditions is not enough. The article presents the results of experimental studies of water cleaning from metal ions using two different meth-ods – electrochemical and electrochemical air bubbling. Electrochemical effect was to purify water passing through the asymmetric alternating current using insoluble heterogeneous electrodes (stainless steel 12X18H10T, titanium alloy ОТ 4-0). The treated water bubbling used air which has passed through purified water. The highest efficiency of water cleaning is achieved by electrochemical method with air bubbling due to the uneven distribution of the electric field intensity at the interphase boundary. This method increases water cleaning efficiency: from cadmium ions in 2.9 times, copper – 1.1, nickel – 5, chro-mium – 1.2, and iron – 1.1. Specific power consumption makes up 1.8 (kW∙h)/m3 while electrochemical cleaning method with the insoluble electrodes and alternating current the specific power consumption is 3.5–4 (kW∙h)/m3.
Keywords: water, electrochemical treatment, air bubbling, intensity, AC current.
References

References

 

1.  Aksenov V. I. Vodnoe khozyaystvo promyshlennykh predpriyatiy [Water economy of industrial enterprises]. Moscow, Teplotekhnik Publ., 2005, 640 p.

2.  Kravtsov V. I. Ravnovesie i kinetika elektrodnykh reaktsiy kompleksnykh metallov [Equilibrium and kinetics of electrode reactions of complex metals]. Leningrad, Khimiya Publ., 1985, 208 p.

3.  Korchinskiy G. A. [The influence of convective diffusion on the electrochemical rectification]. Zhurnal fizicheskoy khimii. 1981, Vol. 55, No. 10, P. 2650–2653 (In Russ.).

4.  Abragam–Bekker. Teoriya elektrichestva [Theory of electricity]. Moscow, GONTI Publ., 1939, 259 p.

5.  Levich V. G. Fiziko-khimicheskaya gidrodinamika [Physico-chemical hydrodynamics]. Moscow, Fizmatgiz Publ., 1959, 700 p.

6.  Nefedov V. G., Matveev V. V., Serebritskiy V. M. [Dynamics of growth of bubbles during electrolysis of water]. Elektrokhimiya. 1991, Vol. 27, No. 4, P. 490–495 (In Russ.).

7.  Perepelkin K. E., Matveev V. S. Gazovye emul’sii [Gas emulsion]. Leningrad, Khimiya Publ., 1979, 200 p.

8.  Shikin V. B., Nazin S. S., Smirnova I. S., Bredikhin S. I. [On the structure of surfactant vesicles in electrolytes]. Elektrokhimiya. 2007, Vol. 43, No. 6, P. 699–703 (In Russ.).

9.  Uvarov L. B., Sharov S. I. [Some features of electrochemical machining with the use of gas-liquid mixtures]. Elektronnaya obrabotka metallov. 1976, No. 1, P. 144–149 (In Russ.).

10.   Ryazanov G. A. Opyty i modelirovanie pri izluchenii elektromagnitnogo polya [Experiments and simulation in electromagnetic field radiation]. Moscow, Nauka Publ., 1966, 208 p.

11.   Kostin N. A. Kinetika i elektrodnye protsessy v vodnykh sredakh [Kinetics and electrode processes in aqueous media]. Kiev, Naukova dumka Publ., 1983, 128 p.

12.   Shestakov I. Ya., Raeva O. V. [Assessment of the impact on the degree of coagulation of water purification from metal ions]. Vestnik SibGAU. 2013, No. 1(47), P. 172–174 (In Russ.).

13.   Shestakov I. Ya., Raeva O. V. [Water purification by metals ions electrochemical treatment alternating current with air bubbling followed by coagulation and sedimentation]. Vestnik SibGAU. 2014, No. 2(54), P. 148–151 (In Russ.).

14.   Shestakov I. Ya., Raeva O. V. Electrochemical wastewater treatment method an alternating current. Tekhnika i tekhnologii. 2011, No. 4/3, P. 348–355.

15.   Shestakov I. Ya., Raeva O. V., Nikiforova E. M., Eromasov R. G. [Study of water treatment by electrochemical method in non stationary electric field followed by coagulation]. 2013, No. 1. (In Russ.). Available at: www.science-education.ru/107-8154 (accessed 10.07.2015).

16.   Shestakov I. Ya., Raeva O. V., Nikiforova E. M., Eromasov R. G. [Water purification from metal ions by electrochemical effects sedimentation and coagulation]. Sovremennye problemy nauki i obrazovaniya. 2013, no. 1. (In Russ.). Available at: www.science-education.ru/107-8154 (accessed 10.07.2015).


Shestakov Ivan Yakovlevich – Dr. Sc, Docent, professor, Electronic engineering and telecommunications Dept.; Reshetnev Siberian State Aerospace University. E-mail: yakovlevish@mail.ru.

Raeva Olesya Vladimirovna – postgraduate student, Electronic engineering and telecommunications Dept., Reshetnev Siberian State Aerospace University. E-mail: O.V.Raeva@yandex.ru.