UDK 537.622.4
MICROMAGNETIC SIMULATIONS OF THE MAIN STATE OF FERROMAGNETIC NANODOTS WITH UNIAXIAL ANISOTROPY
V. A. Fel’k*, P. E. Eroshenko
Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation *E-mail: vlaf@nm.ru
The work performed numerical simulations of the ground state of the ferromagnetic nanodots with uniaxial anisot-ropy. The calculation of the ground state was performed using a three-dimensional micromagnetic simulation package OOMMF for two types of sample geometry – cubic and ellipsoidal with a simple cubic lattice. Cases were analyzed as a ferromagnet of the “easy axis” and “easy plane”. In the simulation permalloy material parameters and materials such as SmCo were used. The latter allowed values of the uniaxial anisotropy which is several orders higher than techno-logically realizable values from permalloy. It is shown that for an ellipsoidal nanodots with permalloy material pa-rameters, there is a transition region, the size of the sample in which the ground state is highly degenerated. It is found that above the upper boundary of the transition region there is a tendency to vortex stabilization of the ground state. For any sample size permalloy effects depending on the topology of the ground state of the system on the magnitude and sign of the constant uniaxial magnetic anisotropy have been identified. For a cubic specimen geometry permalloy exis-tence of a stable vortex in the ground state is possible if the size of nanodots is several times higher than that of the el-lipsoidal case. For samples with material parameters SmCo large uniaxial anisotropy has a stabilizing effect on the vortex structure in the ground state nanodots. Vortex state is feasible for much smaller nanodots, in comparison with the permalloy. Under specific size of nanodots SmCo ground state (in the case of easy-axis) acquires skyrmion-like character.
Keywords: nanodots, ferromagnetic vortices, ferromagnetic ground state.
References

References

 

  1. Belyaev B. A., Izotov A. V., Kiparisov S. Y., Skomorohov G. V. [Synthesis and studying of magnetic properties of nanocrystalline cobalt films]. FTT. 2008, Vol. 50, P. 650–656 (In Russ.).
  2. Scholz W., Suess D., Schrefl T., Fidler J. Micromagnetic simulation of magnetization reversal in small particles with surface anisotropy. J. Appl. Phys. 2004, Vol. 95, No. 11, P. 6807–6809.
  3. Boardman R. P., Fangohr H., Fairman M. J., Zimmermann J., Cox S. J., Zhukov A. A., P. A. J. de Groot. Micromagnetic modelling of ferromagnetic cones. J. Magn. Magn. Mater. 2007, Vol. 312, No. 1, P. 234–238.
  4. Kisielewski M., Maziewski A., Zablotskii V., Stefanowicz W. Micromagnetic simulations and analytical description of magnetic configurations in nanosized magnets. Physica B. 2006, Vol. 372, P. 316–319.
  5. Chebotkevich L. A., Yermakov К. S., Ognev А. V., Pustovalov Y. V. [The magnetic properties of epitaxial arrays nanodisks Co, packed on atomically smooth and vicinal Si substrates]. FTT. 2011, Vol. 53, P. 2152–2156 (In Russ.).
  6. Steblyi М. Y., Kolesnikov А. G., Ognev А. V., Samardak А. S., Chebotkevich L. А. [Influence of nanodisks in two-dimensional array on the magnetization reversal processes]. FTT. 2013, Vol. 55, P. 705–708 (In Russ.).
  7. Mironov V. L., Fraerman А. А., Gribkov B. А., Yermolaeva О. L., Gusev S. А., Vdovichev S. N. [Reversal elliptic nanodisks Co / Si / Co magnetic field probe force microscope]. FTT. 2010, Vol. 52, P. 2153–2158 (In Russ.).
  8. Cowburn R. P., Koltsov D. K., Adeyeye A. O., Welland M. E., Tricker D. M. Single-domain circular nanomagnets. Phys. Rev. Lett.1999, Vol. 83, P. 1042–1045.
  9. Grimsditch M., Giovannini L., Monotcello F., Nizzoli F., Leaf G. K., Kaper H. G. Magnetic normal modes in ferromagnetic nanoparticles: A dynamical matrix approach. Phys. Rev. B. 2004, Vol. 70, P. 054409–054415.
  10. Rivkin K., DeLong L. E., Ketterson J. B. Microscopic study of magnetostatic spin waves. J. Appl. Phys. 2005, Vol. 97, P. 10E309–10E312.
  11. Donahue M. J., Porter D. G. Interagency Report NISTIR 6376. National Institute of Standards and Technology, Gaithersburg, MD, 1999.
  12. Scholz W., Fidler J., Schrefl T., Suess D., Dittrich R., Forster H., Tsiantos V. Scalable parallel micromagnetic solvers for magnetic nanostructures. Comp. Mater. Sci. 2003, Vol. 28, P. 366–383.
  13. Belyaev B. А., Izotov А. V., Leksikov Аn. А. [Micromagnetic calculation of the equilibrium distribution of the magnetic moments of thin films]. FTT. 2009, Vol. 52, P. 1549–1556 (In Russ.).
  14. Korshunov S. Y. [Phase transitions in two-dimensional systems with continuous degeneracy]. UFN. 2006, Vol. 176, P. 233–274 (In Russ.).
  15. Usov N. A., Peschany S. E. Magnetization curling in a fine cylindrical particle. J. Magn. Magn. Mater. 1993, Vol. 118, L290–294.
  16. Usov N. A., Peschany S. E. Vortex magnetization distribution in a thin ferromagnetic cylinder. Fiz. Met. Metalloved. 1994, Vol. 12, P. 1–13.
  17. Kravchuk V. P., Sheka D. D. [Thin ferromagnetic nanodisks in the transverse magnetic field]. FTT. 2007, Vol. 49, P. 1834–1841 (In Russ.).
  18. Skomski R., Phys J. Condens. Matter 15, R841 (2006); Advanced Magnetic Nanostructures, Ed. by D. J. Sellmyer and R. Skomski, Springer, Berlin, 2006.
  19. Ivanov B. А., Avanesyan G. G., Hvalkovski А. V. [Non-Newtonian dynamics of the fast motion of a magnetic vortex]. Pisma v ZhETF. 2010, Vol. 91, P. 190–195 (In Russ.). 
  20. Kim P. D., Orlov V. A., Prokopenko V. S., Zamay S. S., Prinz V. Ya., Rudenko R. Yu., Rudenko T. V. [About the low-frequency resonance of magnetic vortices in micro- and nanospot]. FTT. 2015, Vol. 57, P. 29–36 (In Russ.).
  21. Kruglyak V. V., Demokritov S. O., Grundler D. Magnonics. J. of Phys D-Applied Physics. 2010, Vol. 43, P. 264001–264007.
  22. Kireyev V. Y., Ivanov B. А. [Magnetic vortices in small ferromagnetic particles with a strong dipole interaction]. Pisma v ZhETF. 2011, Vol. 94, P. 330–334 (In Russ.).
  23. Aharoni A. Demagnetizing factors for rectangular ferromagnetic prisms. J. App. Phys. 1998, Vol. 83, P. 3432–3434.
  24. Newell A. J., Williams W., Dunlop D. J. A Generalization of the Demagnetizing Tensor for Nonuniform Magnetization. J. Geophysical Research – Solid Earth. 1993, Vol. 98, P. 9551–9555.

Fel’k Vladimir Aleksandrovich – Docent, Reshetnev Siberian State Aerospace University. E-mail: vlaf@nm.ru.

Eroshenko Pavel Evgen'evich – student, Reshetnev Siberian State Aerospace University. E-mail: vlaf@nm.ru.