UDK 669.2/.8:629.7 Vestnik SibGAU 2014, No. 3(55), P. 202–209
G. G. Krushenko
Institute Computational Modeling SB RAS 50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation E-mail: genry@icm.krasn.ru. Spin-code 2974-6220
In present article the improved and developed new technologies, methods and means used by manufacturing the moulded pieces and aircraft constructions made of АМг10ч alloy are described. In connection with containing magnesium in АМг10ч alloy, a whole series of problems are arised by preparation and founding the alloy because of inclination this element to oxidation and inclination the alloy to gasing that leads to worsening the quality of cast wares. The following actions were developed and put into practice to avoid the alloy from interaction with atmosphere and moisture of sand: 1) inserting the boric acid into the sand; 2) degassing of aluminum-zirconium and aluminum-titanium ligatures; 3) the optimal order of melting the burden materials was elaborated; 4) the high-temperature treatment of liquid alloy is used and 5) filtration of alloy by the pouring-in casting-form with using the 6) device of thermal pipe type, provided fast temperature reducing of superheated alloy. All these measures, taken separately as well as in complex provide obtaining the moulded pieces of АМг10ч alloy with necessary and improved mechanical properties. At that the reproducibility of the mechanical properties of moulded pieces of different fusions tests results is marked.
АМг10ч alloy, technologies fusion and founding, mechanical properties.

1.  Aluminium alloys for aircraft structures. Introduction to Aerospace Materials, 2012, P. 173-201.

2.  Fridljander I. N. [Aluminum alloys in aircraft during periods from 1970 to 2000 and from 2001 to 2015]. Metallovedenie i termicheskaja obrabotka metallov, 2001, no. 1. p. 5-9. (In Russ.)

3.  Dursun T., Soutis C. Recent developments in advanced aircraft aluminium alloys. Revie Materials & Design, April 2014, Vol. 56, P. 862-871.

4. Moreto J. A. et al. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al–Li alloys used in aircraft fabrication. Corrosion Science, July 2014, Vol. 84, P. 30-41.

5. Codden R. Aluminium: Physical properties, characteristics and alloys. Training in aluminium application technologies. Alcan. Banbury: European Aluminium Association. 1994. 60 p.

6. Warren A. S. Developments and challanges for aluminiu. A Boeing perspective. Materials Forum. 2004. Vol. 28. P. 24–31.

7. OAO “Gosudarstvennyy raketnyy tsentr imeni akademika V. P. Makeyeva” [OJSC “State rocket center named after academician V. P. Makeyev”] (In Russ.) Available at: http://makeyev.ru/roccomp/3rd/r29r.

8. Kolobnev I. F. Termicheskaja obrabotka aljuminievyh splavov. Vtoroe pererab. i dop. izd. [Heat treatment of aluminum alloys. Second Rev. and ext. ed.]. Moscow, Metallugy Publ., 1966, 395 p.

9. Li H-T et al. Oxides in Liquid Metals and Alloys. BCAST. Brunel Centre for Advanced Solidification Technology. BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK. P. 93-110.

10. Mezhdunarodnaja vystavka oborudovanie i tehnologii obrabotki. Vystavka Tehnoforum 2014. [The oxide film formed on the surface]. (In Russ.) Available at: http://filebar.kg/metalurgia_svarki/120-okisnaya-plenka-obrazuyuschayasya-na-poverhnosti.html.

11. Aristova N. A., Kolobnev I. F. Termicheskaja obrabotka litejnyh aljuminievyh splavov. [Heat treatment of cast aluminum alloys]. Moscow, Metallurgy Publ., 1977, 144 p.

12. Cheverikin V. V., Hvan A. V., Zolotorevskij V. S. [The change in the morphology of iron-containing phases in aluminum alloys]. Vestnik TGTU. 2012, vol. 18, no. 3, p. 742–748. (In Russ.)

13. Lingying Ye. et al. Modification of Mg2Si in Mg-Si alloys with gadolinium. Materials Characterization. May 2013, Vol. 79, P. 1-6.

14. Shouxun Ji. et al. Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si diecast alloys. Materials Science & Engineering: A. 1 March 2013, Vol. 564, P. 130-139.

15. Guo E. J., Ma B. X., Wang L. P. Modification of Mg2Si morphology in Mg–Si alloys with Bi. Journal of Materials Processing Technology, 12 September 2008, Vol. 206, Issues 1–3, P. 161-166.

16. Chesnokov Ju. V. Formovochnaja smes' dlja lit'ja magnievyh splavov [Molding sand for casting magnesium alloys]. A. s. USSR, no. 1828418, 1993.

17. Player E. The Properties and Practical Processes in the Production of Magnesium Alloy Castings with Special Reference to Elektron. Aircraft Engineering, July 1929,
P. 175-178.

18. Nikitina M. F. Formovochnye materialy dlja izgotovlenija form pri lit'e splavov aljuminij-magnij [Molding materials for the production of moulds for casting alloys aluminium-magnesium], Moscow, Oborongiz Publ., 1963, 192 p.

19. Friedrich H. E., Mordike B. L. Magnesium Technology: Metallurgy, Design Data, Applications. Springer-Verlag Berlin Heidelberg, 2006. 647 p.

20. Krushenko G. G. [The influence of additives in the molding mixture of boric acid on the properties of cast Al-alloys]. Litejnoe proizvodstvo, 2012, no. 10, p. 27–29. (In Russ.)

21. Krushenko G.G. Sposob poluchenija litejnogo aljuminievo-magnievogo splava [A method of obtaining a casting of aluminum-magnesium alloy]. Patent RF, no. 2430177, 2010.

22. Krushenko G. G., Lovcov D. P. [Loss of magnesium smelting alloy AL4]. Cvetnaja metallurgija, 1965, no. 7, p. 40-41. (In. Russ.)

23. Shurygin V. V., Esakov F. V., Avdentov A. M. i dr. Modifikator dlja obrabotki litejnyh aljuminievyh splavov [The modifier for the processing of casting aluminum alloys]. Patent RF, no. 960921. 1982.

24. Qing-liang WANG et al. Production of Al-B master alloys by mixing KBF4 salt into molten aluminum. Transactions of Nonferrous Metals Society of China, January 2013, Vol. 23, Issue 1, P. 294-300.

25. Warmuzek M., Rabczak K., Sieniawski J. The course of the peritectic transformation in the Al-rich
Al-Fe-Mn-Si alloys. Journal of Materials Processing Technology, 15 May 2005, Vol. 162-163, P. 422-428.

26. Spasskij A. G., Rogozhin V. V. [To the question of modification of silumins]. Jubilejnyj sbornik nauchnyh trudov MICMiZ. 1930‒1940. no. 9. Moscow, Metallurgizdat Publ., 1940, p. 566–567.

27. Krushenko G. G., Finogenov P. A., Torshilova S. I. i dr. Sposob prigotovlenija aljuminievo-kremnievyh splavov [The method of preparation of aluminum-silicon alloys]. Patent RF, no. 412270, 1974.

28. Danilov V. I. Rassejanie rentgenovskih luchej v zhidkostjah [X-ray scattering in liquids]. Leningrad-Moscow, ONTI Publ., 1935, 183 p.

29. Mei Q. S., Lu K. Melting and superheating of crystalline solids: From bulk to nanocrystals. Progress in Materials Science, November 2007, Vol. 52, Issue 8,
P. 1175‒1262.

30. Arabej A. V., Rafal'skij I. V. [Computer thermal analysis for monitoring phase transitions samachisa silumins with the influence of temperature melt processing]. Novye materialy i tehnologii ih obrabotki: IX Respublikanskaja studencheskaja nauchno-tehnicheskaja konferencija. [New materials and processing techniques: IX Republican student scientific and technical conference]. Minsk, UE “Technopark BNTU “Metolit”, 2008, p. 17–20. (In Russ.)

31. Voevodina M. A., Krushenko G. G. Fil'trovanie metallicheskih rasplavov. [Filtering metallic melts]. Abakan, Hakasskij tehnicheskij institut - filial Sibirskogo federal'nogo universiteta Publ., 2013, 80 p.

32. Chernomurov F. M., Krushenko G. G., Fedorov S. V. i dr. Ustrojstvo dlja ohlazhdenija metalla [Device for cooling metal]. Patent Rf, no. 1046006, 1983.

33. Krushenko G. G., Hajkin A. L., Torshilova S. I. [The temperature of the processing liquid complex-alloyed alloy system Al-Si-Mg to improve the mechanical properties of castings]. Izvestija vysshih uchebnyh zavedenij. Cvetnaja metallurgija, 1983, no. 5, p. 97–99. (In Russ.)


Krushenko Genry Gavrilovich – Doctor of Engineering Sciences, professor of the Department of Aircraft engines, Siberian State Aerospace University named after academician M. F. Reshetnev, chief researcher of the Institute of Computational Modeling of Siberian branch of Russian Academy of Sciences. E-mail: genry@icm.krasn.ru