UDK 539.21:537.86 Vestnik SibGAU 2014, No. 3(55), P. 192–197
S. S. Aplesnin, A. A. Ostapenko, V. V. Kretinin, A. M. Panasevich, А. I. Galyas, K. I. Yanushkevic
Scientific-Practical Materials Research Center NAS 19, P. Brovki St., Minsk, Belarus, 220072 E-mail: kretin@mail.ru
Multiferroics on the basis of BiFeO3 with spatially-modulated anti-ferromagnetic structure were investigated. The compounds BiFeO3 widely and intensively are investigated as model objects for research of the mechanism of interaction between electric and magnetic subsystems, and for their possible use in spin electronics. Possibility of electric management of magnetization of a material at a room temperature is of interest from the point of view of its use in elements of computer memory with electric record and magnetic reading. The purpose of the investigation is to define the change in magnetoelectric interaction as a result of a variation of an antisymmetric exchange and to investigate the mechanism of low-temperature and high-temperature anomalies of dielectric permeability at bismuth replacement by lanthanum. It’s important to establish magnetoelectric properties of disorder system with random distribution of a constant of magnetoelectric interaction. On films of LaxBi1-xFeO3 measurements of dielectric permeability, a tangent of angle of losses in the range of temperatures 100 K < T < 1000 K without magnetic field and in a magnetic field of B=0.8 T are carried out. The temperature dependences of a real part of dielectric permeability and a tangent of losses angles at a frequency of 105 Hz are defined. At approach to ferroelectric transition dielectric permeability and dielectric losses are sharply increased. At a temperature 835 K the changes in crystal structure attributed to transition from rhombohederal to the orthorhombic phase was found. In the vicinity of magnetic phase transition the anomalies in temperature behavior of dielectric permeability are absent. Bismuth replacement by lanthanum leads to small increase in magnetocapacity, in comparison with pure BiFeO3. Magnetocapacity increases in external electric field, passes through a maximum and falls with growth of temperature.
multiferroics, magnetocapacitance, relaxation, permittivity.
  1. Pjatakov A. P., Zvezdin A. K. [Magnetoelectric materials and multiferroics]. Uspehi fizicheskih nauk. 2012, vol. 182, no. 6, p. 583–620. (In Russ.)
  2. Zvezdin A. K., Pjatakov A. P. [Phase transitions and the giant magnetoelectric effect in multiferroic]. Uspehi fizicheskih nauk. 2004, vol. 174, no. 4, p. 465–470. (In Russ.)
  3. Eerenstein W., Mathur1 N. D., Scott J. F. Multiferroic and magnetoelectric materials. Nature. 2006, vol. 442, p. 759–765.
  4. Popov Yu. F., Pyatakov A. P., Kadomtseva A. M., Vorob'ev G. P., Zvezdin A. K., Mukhin A. A., Ivanov V. Yu. [Features of the magnetic, magnetoelectric and magnetoelastic properties of multiferroic ferroborate samarium SmFe3(BO3)4]. Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki. 2010, vol. 138, no. 2, p. 226. (In Russ.)
  5. Choi Y. J., Zhang C. L., Lee N., Cheong S-W. Cross-Control of Magnetization and Polarization by Electric and Magnetic Fields with Competing Multiferroic and Weak-Ferromagnetic Phases Phys. Rev. Lett. 2010, vol. 105, issue. 097201. doi: http://dx.doi.org/10.1103/ PhysRevLett.105.097201.
  6. Fiebig M. Revival of the magnetoelectric effect. J. Phys. 2005, vol. 38, p. 123–152.
  7. Date M., Kanamori J., Tachiki M. Origin of Magnetoelectric Effect in Cr2O3. J. Phys. Soc. Jpn. 1961, vol. 16, no. 12, p. 2589.
  8. Kimura T. A. Spiral Magnets as Magnetoelectrics. Rev. Mater. Res. 2007, vol. 37, p. 387–413.
  9. Dzyaloshinskii I. Magnetoelectricity in ferro-magnets. Europhys. Lett. 2008, vol. 83, no. 6, issue 67001.
  10. Fiebig M. et al. Observation of coupled magnetic and electric domains. Nature. 2002, vol. 419, p. 818–820.
  11. Gareeva Z. V., Zvezdin А. К. Pinning of magnetic domain walls in multiferroics. Europhys. Lett. 2010, vol. 91, no. 4, issue 47006.
  12. Gareeva Z. V., Zvezdin A. K. [Effect of magnetoelectric interactions at domain boundaries multiferroic]. Fizika Tverdogo Tela. 2010, vol. 52, no. 8, p. 1595. (In Russ.)
  13. Sosnowska I, Peterlin-Neumaier T, Steichele E. Spiral magnetic ordering in bismuth ferrite J. Phys. С. 1982, vol. 15, no. 23, issue 4835.
  14. Zalesskij A. V., Zvezdin A. K., Frolov A. A., Bush A. A. [Spatially modulated magnetic structure in BiFeO3 on the results of investigation of the spectra of nuclear magnetic resonance in 57Fe nuclei]. Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki. 2000, vol. 71, no. 11, p. 682–686. (In Russ.)
  15. Tehranchi М. М., Kubrakov N. F., Zvezdin A. K. Spin-flop and incommensurate structures in magnetic ferroelectrics. Ferroelectics. 1997, vol. 204, p. 181.
  16. Palkar V. R., Prashanthi К. Observation of magnetoelectric coupling in Bi0.7Dy0.3FeO3 thin films at room temperature. Appl. Phys. Lett. 2008, vol. 93, no. 13, issue 132906.
  17. Lane W. M., Bandyopadhyay S. Bennett clocking of nanomagnetic logic using multiferroic single-domain nanomagnets. Appl. Phys. Lett. 2010, vol. 97, issue 173105, p. 1–4.
  18. Kadomtseva A. M. et al. High magnetic field investigations of the magnetoelectric effect in magnetic ferroelectrics (RBi)FeO3. Ferroelectrics. 1995, vol. 169, no. 1, p. 85–95
  19. Razumovskaya O. N., Reznichenko L. A., Shilkina L. A., Amirov A. A., Batdalov A. B., Kallaev S. N., Omarov Z. M., Verbenko I. A. [Features thermal, magnetic and dielectric properties of multiferroic BiFeO3 and Bi0.95La0.05FeO3]. Fizika Tverdogo Tela. 2009, vol. 51, no. 6, p. 1123–1126. (In Russ.)
  20. Jarrier R. et al. Surface phase transitions in BiFeO3 below room temperature. Phys. Rev. B. 2012, vol. 85, issue 184104.
  21. Singh M. K., Katiyar R. S., and Scott J. F. Critical phenomena at the 140 and 200 K magnetic phase transitions in BiFeO3. J. Phys: Condens. Matter. 2008, vol. 20, no. 32, issue 252203.
  22. Singh M. K., Prellier W., Singh M. P., Katiyar R. S. and Scott J. F. Spin-glass transition in single-crystal BiFeO3. Phys. Rev. 2008, vol. 77, no. 14, issue 144403.
  23. Blaauw C. and van der Woude F. Magnetic and structural properties of BiFe03. J. Phys. C: Solid State Phys. 1973, vol. 6, p. 1422–1431.

Aplesnin Sergey Stepanovich – Doctor of Phisical and Mathematical Sciences, professor, head of the Department of Physics, Siberian State Aerospace University named after academician M.F.Reshetnev. E-mail: aplesnin@sibsau.ru 

Ostapenko Aleksey Aleksandrovich – student, Siberian State Aerospace University named after academician M. F.Reshetnev. E-mail: kuraxara1992@mail.ru.

 Kretinin Vasiliy Vladimirovich – student, Siberian State Aerospace University named after academician M. F. Reshetnev. E-mail: kretin@mail.ru Panasevich Aliona Mikhaylovna – postgraduate student, Scientific-Practical Materials Research Centre of NAS of Belarus. E-mail: alyona_panasevich@mail.ru 

Galyas Anatoliy Ivanovich – Candidate of Phisical and Mathematical Sciences, Scientific-Practical Materials Research Centre of NAS of Belarus. E-mail: kazimir@physics.by.

Yanushkevich Kazimir Iosifovich – Doctor of Phisical and Mathematical Sciences, head of the Laboratory, Scientific-Practical Materials Research Centre of NAS of Belarus. E-mail: kazimir@physics.by