UDK 629.78.01 Vestnik SibGAU 2014, No. 3(55), P. 178–184
SOME UNITS SPACECRAFT BALANCING
G. G. Krushenko [1], V. V. Golovanova [2]
1Institute of Computational Modeling SB RAS 50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation E-mail: genry@icm.krasn.ru 2Design Bureau "Arsenal" named after M. V. Frunze 1-3, Komsomol St., Saint-Petersburg, 195009, Russian Federation E-mail: vasilin-a@rambler.ru
Spacecrafts, which include, as a means of launching into orbit and functioning in space  engines, and artificial satellites for various purposes, are components, subassemblies, and assemblies operating in the mode of rotation, and, therefore, affected by the centrifugal forces. And, in the case of unbalance of the material from which they are made, or components relative to the axis of rotation, during operation of the corresponding objects they may be damaged as a result of imbalances that may disturb the working mode or even lead to failure of the spacecraft. In the present work as examples of negative consequences prevent of the imbalance of interest spacecraft, the technology considered balancing and rotating parts turbo-pump assembly of liquid-propellant rocket engine, and b) the electric pump unit of the spacecraft, designed to ensure the maintenance of the temperature modes of the spacecraft. Such objects of study chosen, and due to the fact that the turbo-pump rotor assembly located on it impellers operate a maximum of tens of seconds/minutes either continuously or cyclically at high speed  up to 100000 rpm, they must ensure that the temperature regime of artificial satellites for a much longer time  up to 15 years.
spacecrafts, turbo-pump assembly, liquid propellant rocket engine, electro-pump unit, balancing.
References
  1. Dobrovol'skij M. V. Zhidkostnye raketnye dvigateli. Osnovy proektirovanija: Uchebnik dlja vuzov. 2-e izd., pererab. i dop. [Liquid-propellant rocket engines. Design basis: Textbook for universities. 2nd ed., Rev. and supplementary]. Moscow, Izd-vo MGU im. N. Je. Baumana, 2005, 488 p.
  2. Bobkov A. V. Centrobezhnye nasosy sistem termoregulirovanija kosmicheskih apparatov [Centrifugal pumps systems of spacecraft thermal control]. Vladivostok, Dal'nauka Publ., 2003, 217 p.
  3. Chvanov V. K., Kashkarov A. M., Romasenko E. N. et al. [Turbopump units LRE design NPO Energomash]. Konversija v mashinostroenii, 2006, no. 1, p. 15‒21.
  4. Seong Min Jeon et al. Rotordynamic analysis of a high thrust liquid rocket engine fuel (Kerosene) turbopump. Aerospace Science and Technology, April–May 2013, Vol. 26, Issue 1, P. 169‒175.
  5. Mahutov N. A., Rachuk V. S., Gadenin M. M. et al. Prochnost' i resurs ZhRD. [Strength and resource LRE]. Moscow, Nauka Publ., 2011, 525 p.
  6. Moiseev V. A., Tarasov V. A., Kolmykov V. A. et al. Tehnologija proizvodstva zhidkostnyh raketnyh dvigatelej [Production technology of liquid rocket engines]. Moscow, Izd-vo MGTU im. N. Je. Baumana, 2008, 381 p.
  7. Halimanovich V. I., Zagar O. V., Lekanov A. V. i dr. Sposob ispytanij na resurs centrobezhnogo jelektronasosnogo agregata sistemy termoregulirovanija kosmicheskogo apparata [Method of testing resource centrifugal electric pump unit of the thermal control system of the spacecraft]. Patent RF, no. 2402464, 2010.
  8. Oborin L. A. Nauchno-tehnologicheskie osnovy proizvodstva lityh detalej po vyplavljaemym modeljam dlja silovyh ustanovok letatel'nyh apparatov [Scientific and technological basis of production of cast parts casting for power plants of aircraft]. Krasnoyarsk, SibGAU Publ., 2013, 238 p.
  9. Krushenko G. G., Reshetnikova S. N. The use of heat-resistant alloys to obtain castings of aircraft engines. [Primenenie zharoprochnyh splavov dlja poluchenija lityh detalej dvigatelej letatel'nyh apparatov]. Problemy razrabotki, izgotovlenija i jekspluatacii raketno-kosmicheskoj i aviacionnoj tehniki Materialy VI Vseros. nauchno-tehnicheskoj konferencii [Problems of design, manufacture and operation of aerospace and aeronautical engineering]. Omsk, Publishing house of Omsk state technical University, 2011, p. 119–121.
  10. Koksharov I. I., Krushenko G. G., Torshilova S. I. i dr. [Analysis of the castings, the method of expert estimates]. Zavodskaja laboratorija, 2000, vol. 66, no. 5, p. 64–66. (In Russ.)
  11. Haase T., Termath W., Martsch M. How to Save Expert Knowledge for the Organization: Methods for Collecting and Documenting Expert Knowledge Using Virtual Reality based Learning Environments. Procedia Computer Science, 2013, vol. 25. p. 236‒246.
  12. Rezanova M. V., Krushenko G. G. Some technologies of the improvement of  the quality of cast parts engines [Nekotorye tehnologii povyshenija kachestva lityh detalej dvigatelej]. XIV Vseros. nauchno-tehnich. konf. dlja studentov, aspirantov i molodyh uchenyh “Nauka. Promyshlennost'. Oborona «NPO-2013” [XIV the age of three. scientific-technical. proc. for students, postgraduates and young scientists “Science. Industry. Defence NGO-2013”. Novosibirsk, Novosibirsk state technical University Publ., 2013, p. 536–540. (In Russ.)
  13. Krushenko G. G., Burov A. E. [The influence of feeding gate systems on the mechanical properties of cast parts vehicles]. Tehnologija mashinostroenija, 2007, no. 12, p. 12–15. (In Russ.)
  14. Vasilevskij P. F. Tehnologija stal'nogo lit'ja [The technology of steel castings]. Moscow, Mashinostroenie Publ., 1974, 408 p.
  15. Krushenko G. G., Mishin A. S., Bonchenkov A. A. et al. [Model material for castings made of heat-resistant alloys]. Litejnoe proizvodstvo, 2002, no. 4, p. 18. (In Russ.)
  16. Gunasegaram D. R., Farnsworth D. J., Nguyen T. T. Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments. Journal of Materials Processing Technology, 1 February 2009, Vol. 209, Issue 3, P. 1209‒1219.
  17. Krushenko G. G., Mishin A. S., Bonchenkov A. A. et al. [The technology of solid rotor of heat-resistant alloys]. Tehnologija mashinostroenija. 2002, no. 3, p. 39–40. (In Russ.)
  18. Rachuk V. S., Dmitrenko A. I., Buser M. et al. Single Shaft Turbopump Expands Capabilities of Upper Stage Liquid Propulsion. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 21-23 July 2008, Hartford, American Institute of Aeronautics and Astronautics. 15 p. Available at: http://www.lpre.de/resources/ articles/AIAA-2008-4946.pdf. (accessed 10.08.2014).
  19. Gadaskin L. A., Dmitrenko A. I., Popov V. N. Ustrojstvo dlja balansirovki rotora vysokooborotnoj turbomashiny [Device for balancing of high-speed rotor of a turbomachine]. Patent RF, no. 2204739, 2003.
  20. Chebotarev V. E., Kosenko V. E. Osnovy proektirovanija kosmicheskih apparatov informacionnogo obespechenija: ucheb. posobie. [Principles of design of spacecraft information support: textbook. manual], Krasnoyarsk, SibGAU Publ., 2011, 488 p.
  21. Zahvatkin M. V. [Determination and prediction of motion parameters of the spacecraft taking into account the perturbations caused by the operation of onboard systems]. Preprint IPM im. M.V. Keldysha, 2014, no. 45, 30 p. (In Russ.)
  22. Vejnberg D. M., Vereshhagin V. P., Miroshnik O. M. et al. Unikal'nye jelektromehanicheskie bortovye sistemy orbital'noj kosmicheskoj stancii “Mir”. [Unique electro-mechanical on-Board system orbital space station “Mir”]. Moscow, Nauka Publ., 2001, 55 p.
  23. Bobkov A. V., Katalazhnova I. N. [Comparative analysis of methods of calculation of centrifugal pumps in application to small-size structures aerospace]. Izvestija Samarskogo nauchnogo centra Rossijskoj akademii nauk, 2010, vol. 12, no. 1, p. 307–309. (In Russ.)
  24. Dvirnyj V. V., Piskulina M. A., Plotnikov K. O. [Innovation units systems thermoregulatory spacecraft]. Intellekt i nauka: trudy XIV Vseroscijskoj konferenci [Intellect and science: proceedings of the XIV all-Russian conference]. Zheleznogorsk, 2014, p. 8–10. (In Russ.)
  25. Dvirnyj V. V., Lekanov A. V., Halimanovich V. I. et al. Jelektronasosnyj agregat [Electropump unit]. Patent RF, no. 2290540, 2006.
  26. Dvirnyj V. V. Tehnologicheskie osobennosti agregatov avtomatiki sistem termoregulirovanija kosmicheskih apparatov s dlitel'nym srokom aktivnogo sushhestvovanija. Dis. kand. tekh. nauk. [Technological features of aggregates automation systems thermal control of spacecraft with a long lifetime]. Diss. Cand.. techn. Sci. CAA, 1993.
  27. Golovjonkin E. N., Dvirnyj V. V., Kovaljov N. A. i dr. Agregaty avtonomnyh jenergeticheskih sistem. Ucheb. Posobie. [The units stand-alone power systems. The textbook. manual]. Krasnoyarsk, KrPI Publ., 1986, 89 p.
  28. [Satellite telecommunications] Informacionnye sputnikovye sistemy, 2010, no. 10, p. 8–10. (In Russ.)

Krushenko Genry Gavrilovich – Doctor of Engineering Sciences, professor of the Department of Aircraft engines, Siberian State Aerospace University named after academician M. F. Reshetnev, chief researcher of the Institute of Computational Modeling of Siberian branch of Russian Academy of Sciences. E-mail: genry@icm.krasn.ru

Golovanova Vasilina Valerjevna – postgraduate student, leading engineer of the Department of special-purpose programmes, FGUP “Development laboratory “Arsenal” named after M.V. Frunze”, Saint-Petersburg State University of Aerospace Instrumentation. E-mail: vasilin-a@rambler.ru