UDK 538.955
ATOMIC AND ELECTRONIC STRUCTURE OF CNT/LSMO-BASED NANOCOMPOSITES: A DFT STUDY
E. A. Kovaleva1,2*, A. A. Kuzubov1,2, A. V. Kuklin1,2, Yu. G. Mikhalev1, Z. I. Popov2,3
1 Siberian Federal University 79, Svobodny Av., Krasnoyarsk, 660041, Russian Federation 2 Kirensky Institute of Physics SB RAS 50–38, Akademgorodok, Krasnoyarsk, 660036, Russian Federation 3 Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation *E-mail: kovaleva.evgeniya1991@mail.ru
Complex half-metallic manganites La1-xSrxMnO3 (LSMO) are promising materials for spintronic and spicaloritronic applications due to 100 % of spin polarization. Using spin-polarized currents through LSMO-graphene interfaces a number of LSMO-based high-efficiency organic LED and spin-valve nanodevices have been developed. Large magne-toresistance effects bonded with large output signals were detected in a nanodevice. The device of multiwall carbon nanotube that spans a gap between spin-polarized half-metallic La0.7Sr0.3MnO3 electrodes demonstrated long spin life-time and high Fermi velocity in the nanotube, the high spin polarization of the manganite electrodes and the resistance of the interfacial barrier for spin injection. The experimental results were supported by density functional theory calcu-lations. Interfaces of La0,67Sr0,33MnO3 with armchair and zigzag carbon nanotubes (CNT) were studied by means of quantum chemistry within density functional theory. All calculations were performed using generalized gradient ap-proximation with Hubbard correction (GGA+U) and Grimme correction of dispersion interaction. Different configura-tions of composite compartments mutual arrangement were considered. The analysis of partial densities of states (PDOS) reveals the influence of substrate on nanotube’s electronic structure. The possibility of nanotubes’ spin polari-zation and utilization of such nanocomposites in spintronics is also discussed. It was found that interaction between carbon nanotubes and LSMO slab lead to major deformation of the tube due to the difference in structural parameters of composite compartments. Zigzag (9,0) nanotube is contracted by 9% while armchair (5,5) nanotube is stretched by 5 %. Although this deformation results in significant change in nanotube’s electronic structure, there is no visible difference between spin-up and spin-down PDOSes of the tubes. Composites are then almost totally spin-polarized due to the presence of LSMO.
Keywords: carbon nanotubes, spin polarization, spintronics, LSMO, GGA+U.
References

References

 

1.  Marrows C. H., Hickey B. J. Introduction: New directions in spintronics (2011) Phil. Trans. R. Soc. A, 369, p. 3027–3036. Doi: 10.1098/rsta.2011.0156.

2.  Naber W. J. M., Faez S., Wiel W. G. Organic spintronics (2007) J. Phys. D: Appl. Phys., 40, R205. Doi:10.1088/0022-3727/40/12/R01.

3.  Shiraishi M., Ikoma T. Molecular spintronics (2011) Physica E, 43, p. 1295–1317.

4.  Tombros N., Jozsa C., Popinciuc M., Jonkman H. T., Wees B. J. Electronic spin transport and spin precession in single graphene layers at room temperature (2007) Nature, 448, p. 571–574. Doi:10.1038/nature06037.

5.  Tsukagoshi K., Alphenaar B.W., Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube (1999) Nature, 401, p. 572–574.

6.  Xiong Z. H., Wu D., Vardeny V. Z., Shi J. Giant magnetoresistance in organic spin-valves (2004) Nature, 427, p. 821–824.

7.  Petta J. R., Slater S. K., Ralph D. C. Spin-Dependent Transport in Molecular Tunnel Junctions (2004) Phys. Rev. Lett., 93, 136601(4).

8.  Sakai S., Yakushiji K., Mitani S., Takanashi K., Naramoto H., Avramov P., Narumi K., Lavrentiev V. Tunnel magnetoresistance in Co nanoparticle/Co-C60 compound hybrid system (2006) Appl. Phys. Lett., 89, 113118(3).

9.  Sakai S., Sugai I., Mitani S., Takanashi K., Matsumoto Y., Naramoto H., Avramov P. V., Okayasu S., Maeda Y. Giant tunnel magnetoresistance in co-deposited fullerene-cobalt films in the low bias-voltage regime (2007) Appl. Phys. Lett., 91, 242104(3).

10.    Xue J., Sanchez-Yamagishi J., Bulmash D., Jacquod P., Deshpande A., Watanabe K., Taniguchi T., Jarillo-Herrero P., LeRoy B. J. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride (2011) Nature materials, 10, p. 282–285. Doi:10.1038/nmat2968.

11.    Auwärter W., Muntwiler M., Osterwalder J., Greber T. Defect lines and two-domain structure of hexagonal boron nitride films on Ni(111) (2003) Surface Science, 545, p. L735–L740.

12.    Jaworski C. M., Yang J., Mack S., Awschalom D. D., Heremans J. P., Myers R. C. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor (2010) Nature Mater., 9, p. 898–903. Doi:10.1038/nmat2860.

13.    Le Breton J.-C., Sharma S., Saito, Yuasa S., Jansen R. Thermal spin current from a ferromagnet
to silicon by Seebeck spin tunneling (2011) Nature, 475, p. 82–85. Doi:10.1038/nature10224.

14.    Groot R. A., Mueller F. M., Engen P. G., Buschow K. H. J. New Class of Materials: Half-Metallic Ferromagnets (1983) Phys. Rev. Lett., 50, p. 2024–2027.

15.    Park J. H., Vescovo E., Kin H. J., Kwon C., Ramesh R.,Ventakesan T. Direct evidence for a half-metallic ferromagnet (1998) Nature, 392, p. 794–796.

16.    Viret M., Nassar J., Drouet M., Contour J. P., Fermon C., Fert A. Spin polarised tunnelling as a probe of half metallic ferromagnetism in mixed-valence manganites (1999) J. Magn. Magn. Mat., 198–199, p. 1–5.

17.    Davis A. H., Bussmann K. Organic luminescent devices and magnetoelectronics (2003) J. Appl. Phys., 93, p. 7358–7361. Doi:10.1063/1.1540174.

18.    Li F., Li T., Guo X. Vertical Graphene Spin Valves Based on La2/3Sr1/3MnO3 Electrodes (2014) ACS Appl. Mater. Interfaces, 6, p. 1187–1192. Doi:10.1021/am404866r.

19.    Hueso L. E., Pruneda J. M., Ferrari V., Burnell G., Valdés-Herrera J. P., Simons B. D., Littlewood P. B., Artacho E., Fert A., Mathur N. D. Transformation of spin information into large electrical signals using carbon nanotubes (2007) Nature, 445, p. 410–413. Doi:10.1038/ nature05507.

20.    Zheng B., Binggeli N. Influence of the interface atomic structure on the magnetic and electronic properties of La2/3Sr1/3MnO3/SrTiO3(001) heterojunctions (2010) Phys. Rev. B, 82, 245311. Doi:10.1103/PhysRevB.82. 245311.

21.    Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals (1993) Phys. Rev. B, 47, p. 758.

22.    Kresse G., Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium (1994) Phys. Rev. B, 49, p. 14251.

23.    Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Comput. Mat. Sci, 6, p. 15.

24.    Martin M. C., Shirane G., Endoh Y., Hirota K., Moritomo Y., Tokura Y. Magnetism and structural distortion in the La0.7Sr0.3MnO3 metallic ferromagnet (1996) Phys. Rev. B, 53, p. 4285–14291.

25.    Tsui F., Smoak M. C., Nath T. K., Eom C. B. Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films (2000) Appl. Phys. Lett., 76, pp. 2421–2423. Doi:10.1063/1.126363.

26.    Ma C., Yang Z., Picozzi S. Ab initio electronic and magnetic structure in La0.66Sr0.33MnO3: strain and correlation effects (2006) J. Phys.: Condens. Matter, 18, p. 7717–7728. Doi:10.1088/0953-8984/18/32/019.

27.    Poggini L., Ninova S., Graziosi P., Mannini M., Lanzilotto V., Cortigiani B., Malavolti L., Borgatti F., Bardi U., Totti F., Bergenti I., Dediu V. A., Sessoli R. A Combined Ion Scattering, Photoemission, and DFT Investigation on the Termination Layer of a La0.7Sr0.3MnO3 Spin Injecting Electrode (2014) J. Phys. Chem. C, 118 (25), p 13631–13637. Doi:10.1021/ jp5026619.

28.          Kuzubov A. A., Kovaleva E. A., Avramov P., Kuklin A. V., Mikhaleva N. S., Tomilin F. N., Sakai S., Entani S., Matsumoto Y., Naramoto H. Contact-induced spin polarization in BNNT(CNT)/TM (TM=Co, Ni) nanocomposites (2014) Journal of Applied Physics, 116, 084309. Doi: 10.1063/1.4894157.


Kovaleva Evgeniya Andreevna – postgraduate student, Siberian Federal University, engineer at Kirensky Institute of Physics SB RAS. Е-mail: kovaleva.evgeniya1991@mail.ru.

Kuzubov Aleksandr Aleksandrovich – Cand. Sc., senior researcher at Kirensky Institute of Physics SB RAS; Docent, Siberian Federal University. E-mail: alexxkuzubov@gmail.com.

Kuklin Artem Valentinovich ‑ postgraduate student, Siberian Federal University, engineer at Kirensky Institute of Physics SB RAS. E-mail: artem.icm@gmail.com.

Mikhalev Yuriy Glebovich – Dr. Sc., Professor, Siberian Federal University. E-mail: y.mihalev@bk.ru.

Popov Zakhar Ivanovich – Cand. Sc., Reshetnev Siberian State Aerospace University, researcher at Kirensky Institute of Physics SB RAS. E-mail: zipcool@bk.ru.