UDK 537.525.5
MODELING OF METAL VAPOR IONIZATION PROCESSES IN THE CATHODE SPOT OF A VACUUM ARC
A. V. Ushakov1, 2, I. V. Karpov1, 2*, A. A. Lepeshev2 3
1Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation 2Siberian Federal University 79, Svobodny Av., Krasnoyarsk, 660041, Russian Federation 3Krasnoyarsk Scientific Center, SB RAS 50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation *E-mail: sfu-unesco@mail.ru
In this paper the model of the cathode spot of a vacuum arc is considered in the framework of the drift-diffusion rep-resentation. The use of the drift-diffusion approximation allows doing without calculation of the functions of particle distribution by energy, as well as without taking into account different energy reactions, which are not associated with change in particle charge. Using the average characteristics of positively and negatively charged ions, while their pa-rameters are taken from experiment, eliminates the need to take into account a large number of basic reactions of in-teraction between the various components of metal vapor. It is shown that the field intensity of the plasma column is significantly reduced. The given column is surrounded by the bulk charge of slow positive ions, providing high field intensity in front of it. While forming a plasma reaction zone, ionization of the metal vapor occurs mainly in a thin layer in front of the ion cloud, and the ion recombination predominates in this column. Ionization provides a constant elonga-tion of conducting plasma column and moving the bulk charge layer on the outer boundary of the current state, i.e., towards the cathode. This, in turn, leads to a displacement of the local maximum of the electric field and to the dis-placement of the zone of intense ionization, and provides the movement of the so-called ionization wave. The field inten-sity in the plasma channel is less than in front of it. The field intensity it is too low and the impact of ionization in the channel does not occur. The key role is played by the loss of electrons due to recombination process.
Keywords: Vacuum arcs, Cathode spots, vacuum, drift-diffusion approximation.
References

References

 

  1. Ushakov A. V., Karpov I. V., Lepeshev A. A., Shaikhadinov A. A., Fedorov L. Yu. [Technology Ready Use For Producing Nanomaterials in the Plasma of a Low-Pressure Pulsed Arc Discharge]. Vestnik SibGAU. 2015, Vol. 16, No. 2, P. 485–490 (In Russ.).
  2. Ushakov A. V., Karpov I. V., Lepeshev A. A., Petrov M. I. Enhancing of magnetic flux pinning in YBa2Cu3O7−x/CuO granular composites. J. Appl. Phys., 2015, Vol. 118, No 2, P. 023907. Doi: http://dx.doi.org/ 10.1063/1.4926549.
  3. Fedorov L. Yu., Ushakov A. V., Karpov I. V., Lepeshev A. A., Shaikhadinov A. A. [Study of Carbide Formation in the Plasma of a Low-Pressure Pulsed Arc Discharge]. Vestnik SibGAU. 2015, Vol. 16, No. 2, P. 491–495 (In Russ.).
  4. Karpov I. V., Ushakov A. V., Fedorov L. Yu., Lepeshev A. A. Method for Producing Nanomaterials in the Plasma of a Low Pressure Pulsed Arc Discharge. Technical Physics, 2014, Vol. 84, No. 4, P. 559–563.
  5. Ushakov A. V., Karpov I. V., Lepeshev A. A., Fedorov L. Yu., Petrov M. I. Study of Magnetic Flux Pinning in Granular YBa2Cu3O7–y/nanoZrO2 Composites. JETP Letters, 2014, Vol. 99, No. 2, P. 105–109. Doi: 10.1134/S002136401402009X.
  6. Ushakov A. V., Karpov I. V., Lepeshev A. A., Petrov M. I., Fedorov L. Yu. Specific Features of the Behavior of Electroarc CuO Nanoparticles in a Magnetic Field. Physics of the Solid State, 2015, Vol. 57, No. 5, P. 919–923.
  7. Ushakov A. V., Karpov I. V., Lepeshev A. A. The influence of oxygen concentration on the formation of crystalline phases ZrO2 nanoparticles during the synthesis of the plasma arc discharge of low pressure. Physics of the Solid State, 2015, Vol. 57, No. 11, P. 2251–2253.
  8. Fedorov L. Yu., Karpov I. V., Ushakov A. V., Lepeshev A. A. Influence of Pressure and Hydrocarbons on Carbide Formation in the Plasma Synthesis of TiC Nanoparticles. Inorganic Materials, 2015, Vol. 51, No. 1, P. 25–28. Doi: 10.1134/S0020168515010057.
  9. Ushakov A. V., Karpov I. V., Fedorov L. Yu., Lepeshev A. A. Mechanical and Tribological Properties of Complex-Modified Material Based On Ultra High Molecular Weight Polyethylene. Journal of Friction and Wear, 2014, Vol. 35, No. 1, P. 7–11. Doi: 10.3103/ S1068366614010103.
  10. Kesaev I. G. Katodnye protsessy elektricheskoy dugi. [Cathodic processes of electric arc]. Moscow, Nauka Publ., 1968. 244 p.
  11. Rakhovskii V. I. Fizicheskie osnovy kommutatsii elektricheskogo toka v vakuume. [Physical bases of switching electric current in a vacuum]. Moscow, Nauka Publ., 1970. 520 p.
  12. Harris L. Katodnye protsessy. Vakuumnye dugi. [Cathode processes. Vacuum arcs.] Moscow, Mir Publ., 1982, P. 153–209 (In Russ.).
  13. Daalder J. Erosion and the origin of charged and neutral species in vacuum arcs. J. Phys. D: Appl. Phys. 1975, Vol. 8, No. 14, P. 1647–1659.
  14. Rakhovskii V. Experimental Study of the Dynamics of Cathode Spots Development. IEEE Transactions on Plasma Science. 1976, Vol. 4, No. 2, P. 81–102.
  15. Lyubimov G., Rakhovskiy V. Katodnoe pjatno vakuumnoj dugi. [The cathode spot of a vacuum arc]. Physics-Uspekhi. 1978, Vol. 125, No. 4, P. 665–706 (In Russ.).
  16. Plyutto A. A., Ryzhkov V. N., Kapin A. T. Vysokoskorostnye potoki plazmy vakuumnykh dug [High vacuum arc plasma flows]. ZhJeTF. 1964, Vol. 47, No. 2, P. 494–507 (In Russ.).
  17. Proskurovskiy D., Puchkarev V. [The formation of new emission sites on the cathode during electric current switching in vacuo. 2. Display of the established laws in a vacuum discharge]. ZhTF. 1979, Vol. 49, No. 12, P. 2619–2622 (In Russ.).

Ushakov Anatoly Vasil’evich – Cand. Sc., Docent, senior researcher, Reshetnev Siberian State Aerospace University. E-mail: ushackov@mail.ru.

Karpov Igor Vasil’evich – Cand. Sc., senior researcher, Siberian Federal University. E-mail: karpovsfu@mail.ru.

Lepeshev Anatoly Aleksandrovich – Dr. Sc., lead researcher, Siberian Federal University. E-mail: alepeshev@yandex.ru.