UDK 537.312:538.911'956
THE EFFECT OF CATION SUBSTITUTION ON POLYMORPHIC TRANSITIONS IN BISMUTH PYROSTANNATE Bi2Sn2O7
L. V. Udod1,2*, M. N. Sitnikov1
1Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation 2Kirensky Institute of Physics, SB RAS 50–38, Akademgorodok, Krasnoyarsk, 660036, Russian Federation *E-mail: luba@iph.krasn.ru
The goal of this work is to develop a new technology of sensor materials required for gas sensing devices used in missile. The aim of this work is to study the effect of doping cations with different valency on the crystallographic structure, dielectric and electrical properties of pyrochlore compound Bi2Sn2O7 with selectivity to gases. Polycrystal-line compounds Bi2(Sn1-xMex)2O7, where Me = Mn, Cr, x = 0, 0.05 have been synthesized by conventional solid-state reaction. According to the X-ray powder diffraction research, our sample consists of two polymorphs phases: cubic and rhombic. Two new structural transition are found in Bi2 (Sn0.95Cr0.05)2O7 solid solutions by scanning calorimetry, as compared to bismuth pyrostannate Bi2Sn2O7. Ions Mn4+ leads to shift of phase boundary of polymorphic transitions towards lower temperatures, and the phase α→β-transition at about 370 K, which is characteristic for Bi2(Sn1-xCrx)2O7, where x = 0, 0.05 is suppressed. The polymorphic transition at T = 543 K for Bi2(Sn0.95Mn0.05)2O7 occurs with calorification, in contrast to Bi2(Sn1-xCrx)2O7, where x = 0, 0.05. The relationship between structural, electrical and dielectric properties is investigated. Anomalies in the tempera-ture dependence of electrical resistivity and dielectric permeability (real and imaginary part) as in the low region temperatures as in the high region temperature are found. These features are explained within a model of martensitic phase transitions. The temperature of the structural phase transitions correlates with temperature of maximum of the electrical resistivity in the temperature range 300 < T < 1000 K for Bi2(Sn1-xCrx)2O7, x = 0, 0.05 was found by scanning calorimetry method.
Keywords: polymorphic transitions, dielectric permeability, cation substitution, electrical resistivity, differential scanning calorimetry.
References

References

 

1.   Sarala Devi G., Manoraoma S. V., Rao V. J. SnO2: Bi2O3 based CO sensors: Laser-Raman, temperature programmed desoption and X-ray photoelectron spectroscopic studies. Sensors and Actuators B. 1999, Vol. 56, P. 98–105.

2.   Kupriyanov L. Yu. (Ed.). Semiconductor Sensors in Physico-Chemical Studies Handbook of Sensors and Actuators Series, Moscow, 1999, 234 p.

3.   Selyama T. (Ed.). Chemical Sensors Technology. Amsterdam: Kodansha Elsevier, Publ., 1998, 459 p.

4.   Ling H. C., Yan M. F., Rhodes W. W. High dielectric constant and smoll temperature coefficient bismuth-based dielectric compositions. J. Mater. Res. 1990, Vol. 5(8), P. 1752–1762.

5.   Brisse F., Knor O. Pyrochlores. III. X-Ray, neutron, infrared, and dielectric studies of A2Sn2O7 stannates. Can. J. Chem. 1968, Vol. 46, P. 859–873.

6.   Minervini L., Grimes R. W., Sickafus K. E. Disorder in Pyrochlore Oxides. J. Am. Ceram. Soc. 2000, Vol. 83(8), P. 1873–1878.

7.   Brown S., Gupta H. C. Lattice dynamic study of optical modes in Tl2Mn2O7 and In2Mn2O7 pyrochlores. Phys. Rev. B 2004, Vol. 69, P. 054434-6.

8.   Walsh A. and Watson. W. G. Polymorphism in Bismuth Stannate: A First-Principles Study. Chem. Mater. 2007, Vol. 19. P. 5158–5164.

9.   Udod L. V., Aplesnin S. S., Sitnikov M. N., Molokeev M. S. Dielectric and Electrical Properties
of Polymorphic Bismuth Pyrostanate Bi2Sn2O7. Physics of the Solid State. 2014, Vol. 56, P. 1315–1319.

10.  Petrakovskii G. A., Sablina K. A., Udod L. V. Pankrats A. I., Velikanov D. A., Szymczak R., Baran M., Bondarenko G. V. Effect of Ni-substitution on magnetic phase transition in CuB2O4. JMMM. 2006, Vol. 300, P. e476–e478.

11.  Petrakovskii G. A., Sablina K. A., Udod L. V. et al. Effect of Substitution on the Magnetic Properties of CuB2O4. The Physics of Metals and Metallography. 2005, Vol. 99(1), P. S53–S56.

12.  Aplesnin S. S., Udod L. V., Sitnikov М. N. et al. [Correlation of magnetic and transport properties with polymorphic transitions in pirostannate bismuth Bi2(Sn1−xCrx)2O7]. Fizika Tverdogo Tela. 2015, Vol. 57, P. 1590–1595 (In Russ.).

13.  Udod L. V., Aplesnin S. S., Eremin E. V., Sitnikov M. N., Molokeev M. S. Effect of Mn Doping on Magnetic and Dielectric Properties of Bi2Sn2O7. Solid State Phenomena. 2015, Vol. 233-234, P. 105–108.

14.  Tumaev E. N., Avadov K. S. [Optical properties of trivalent chrome ions in crystal LiNbO3]. Fizika Tverdogo Tela. 2011, Vol. 53, P. 518–523 (In Russ.).

15.  Yang Z. Y., Rudowicz C., Qin J. The effect of disorder in the local lattice distortions on the EPR and optical spectroscopy parameters for a new Cr3+ defect center in Cr3+: Mg2+: LiNbO3. Physica B. 2002,
Vol. 318(2–3), P. 188–197.

16.  Huiling Du, Xi Yao, Liangying Zhang. Structure, IR spectra and dielectric properties of Bi2O3–ZnO–SnO2–Nb2O5 quarternary pyrochlore. Ceramics International. 2002, Vol. 28, P. 231–234.

17.  Udod L. V., Sitnikov M. N., Aplesnin S. S., Molokeev M. S. Electrical and Dielectrical Propeties
of Gas-Sensor Resistive Type Bi2Sn2O7. Solid State Phenomena. 2014, Vol. 215, P. 503–506.

18.  Yu S. Y., Liu Z. H., Liu G. D., Chen J. L., Cao Z. X., Wu G. H., Zhang B., Zhang X. X. Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys (x = 14–16) upon martensitic transformation. Appl. Phys. Lett. 2006, Vol. 89, P.162503-3.

19.  Sharma V. R., Chattopadhyay M. R., Shaeb R. Y. B., Chouhan A., Roy S. B. Large magnetoresistance in Ni50Mn34In16 alloy. Appl. Phys. Lett. 2006, Vol. 89, P. 222509-3.

20.  Podzorov V., Kim B. G., Kiryukhin V., Gershenson M. E., Cheong S.-W. Martensitic accommodation strain and the metal-insulator transition in manganites. Phys. Rev. B. 2001, Vol. 64, P. 140406(R).

21.  Shannon R. D., Beirlein J. D., Gillon J. L. Polymorphism in Bi2Sn2O7. J. Phys. Chem. Solids. 1980, Vol. 41, P. 117–122.

22.  Aron Walsh, Graeme W. Watson, David J. Payne. A theoretical and experimental study of the distorted pyrochlore Bi2Sn2O7. J. Mater. Chem. 2006, Vol. 16, P. 3452–3458.

23.  Jenlrzejewska I., Mroziski J., Zajdel P. X-Ray and magnetic investigations of the polycrystalline compounds with general formula ZnxSnyCrzSe4. Archives of Metallurgy and Materials, 2009, Vol. 54, P. 723–730.

24.  Weiss A., Witte H. Kristallstrukture und chemische Bindung. Verlag Chemie, Weinheim, 1983.

25.  Pandit A. A., More S. S., Dorik R. G. Structural and magnetic properties of Co1+ySnyFe2–2y–xCrxO4 ferrite system. Bull. Mater. Sci. 2003, Vol. 26, P. 517–521.


Udod Lubov Biktorovna – Cand. Sc., Docent of Physics department, Reshetnev Siberian State Aerospace University, research assistant of Kirensky Institute of Physics, SB RAS. E-mail: luba@iph.krasn.ru.

Sitnikov Maxim Nikolaevich – postgraduate student of Physics department, Reshetnev Siberian State Aerospace University. E-mail: kineru@mail.ru.