UDK 539.12.04
THE HETEROGENEOUS RADIATION SHIELD FOR SPACECRAFTS
S. V. Telegin, V. N. Saunin, O. N. Draganyuk, M. N. Draganyuk
Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation Е-mail: telegin@sibsau.ru
The paper deals with modeling of elemental composition and properties of heterogeneous layers in multilayered shields to protect spacecraft onboard equipment from radiation emitted by the natural Earth’s radiation belt. This ra-diation causes malfunctioning of semiconductor elements in electronic equipment and may result in a failure of the spacecraft as a whole. We consider four different shield designs and compare them to the most conventional radiation-protective material for spacecraft – aluminum. Out of light and heavy chemical elements we chose the materials with high reaction cross sections and low density. The mass attenuation coefficient of boron-containing compounds is 20 % higher than that of aluminum. Heterogeneous shields consist of three layers: a glass cloth, borated material and nickel. With a protective shield containing heavy metal the output bremsstrahlung can be reduced. The amount of gamma rays that succeed to penetrate the shield is 4 times less compared to aluminum. The shields under study have the thicknesses of 5.95 and 6.2 mm. A comparative analysis of homogeneous and multilayered protective coatings of the same chemical composition has been performed. A heterogeneous protective shield has been found to be advantageous in weight and shielding properties over its homogeneous counterparts and aluminum. The dose characteristics and transmittance were calculated by the Monte Carlo method. The results of our study lead us to conclude that a three-layer boron carbide shield provides the most effective protection from radiation. This shield ensures twice as low absorbed dose and 4 times less the number of penetrated gamma-ray photons compared to its aluminum analogue. Moreover, a het-erogeneous shield will have a weight 10 % lighter than aluminum, with the same attenuation coefficient of the electron flux. Such heterogeneous shields can be used to protect spacecraft launched to geostationary orbit. Furthermore, a pro-tective boron-containing and nickel coating can be deposited onto a finished housing frame of space equipment.
Keywords: radiation protection, composite material. modeling, the flow of electrons, the shielding ability.
References

References

 

1.  Anashin V. S. [Problems of ensuring long active lifetime of REA of communication satellites] Elektrosvyaz’. 2009, No. 4, P. 19–22 (In Russ.).

2.  Kuznetsov N. V. Radiatsionnaya opasnost’ na okolozemnykh orbitakh i mezhplanetnykh traektoriyakh kosmicheskikh apparatov [Radiation hazard on the Earth orbits and interplanetary trajectories of spacecrafts] (In Russ.). Available at: http://nuclphys.sinp.msu.ru/crd/crd3. htm (accessed 29.12.2014).

3.  Novikov L. S. Model’ kosmosa. 8 izd. T. 2: Vozdeystvie kosmicheskoy sredy  na materialy i oborudovanie kosmicheskikh apparatov. [Space model. 8th prod. Vol. 2: Impact of the space environment on materials and equipment of spacecrafts] Moscow, Knizhnyy dom Universitet Publ., 2007, 1144 p. (In Russ.).

4.  Pavlenko V. I., Edamenko O. D., Yastrebinskiy R. N. [Radiation protective composite material on the basis of a polystyrene matrix] Vestnik BGTU im. V. G. Shukhova, 2011, No. 3, P. 113–116 (In Russ.).

5.  Pavlenko V. I., Bondarenko G. G., Tarasov D. G., Edamenko O. D. [Modeling of impacts of fast electrons on polymeric radiation protective composites]. 22 mezhdunarodnaya konferentsiya “Radiatsionnaya fizika tverdogo tela” pod red. G. G. Bondarenko [Proceedings of the 22nd international conference “Radiation Physics of a Solid Body”, Ed. by G. G. Bondarenko], Sevastopol’, 2012, P. 222–228 (In Russ.).

6.  Halbleib J. A., Kensek R. P., Valdez G., Seltzer S. M., Berger M. J. ITS: the integrated TIGER series of electron/photon Monte Carlo transport codes – Version 3.0. IEEE Trans. Nucl. Sci., 1992, Vol. 39 (4), P. 1025–1029.

7.  Tatsuo Tabata; Vadim Moskvin, Pedro Andreo, Valentin Lazurik,Yuri Rogov. Extrapolated ranges of electrons determined from transmission and projected-range straggling curves. Radiation Physics and Chemistry, 2002, No. 64, P. 161–167.

8.  Bell J., Martin C., Lail D., Nguyen P. Radiation shielding for a lunar base. National Aeronautics and Space Adiminstratoin, 2011.

9.  Bezrodnykh I. P., Morozova E. I., Petrukovich A. A. [Brake radiation of electrons in the spacecraft material. Calculation procedure.] Voprosy elektromekhaniki, 2011, Vol. 120, P. 37–44 (In Russ.).

10.   Novikov L. S., Mileev V. N., Voronina E. N., Galanina L. I., Makletsov A. A., Sinolits V. V. [Radiative effects on materials of space equipment. Surface. X-ray, synchrotron and neutron studies.]  Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya, 2009, No. 3, P. 1–18 (In Russ.).

11.   Bespalov V. I. Lektsii po radiatsionnoy zashchite : ucheb.posobie. [Lectures on radiation protection: textbook.] Tomsk, Izd-vo Tomskogo politekhnicheskogo universiteta Publ., 2012, P. 40–42 (In Russ.).

12.   Kimel’ L. R., Mashkovich V. P. Zashchita ot ioniziruyushchikh izlucheniy. Spravochnik. Izd. 2. [Protection against ionizing radiation. Reference book. Edition 2.] Moscow, Atomizdat Publ., 1972, 312 p. (In Russ.).

13.   Khaffner Dzh. Yadernoe izluchenie i zashchita v kosmose. [Nuclear radiation and protection in space] Moscow: Atomizdat Publ., 1979, 304 p.

14.   GOST 191702001. Steklovolokno. Tkan’ konstruktsionnogo naznacheniya. Tekhnicheskie usloviya. [State Standard 19170–2001. Fiber glass. Fabric for structural purposes. Specifications.] Moscow, Standartinform Publ., 2002, 20 p. (In Russ.).

15.   Varga L., Horvath E. Evaluation of electronics shielding in micro-satellites. Technical memorandum: DRDC Ottawa TM 2003-017. Defence R&D Canada. Ottawa, 2003, 25 p.

16.   Bespalov V. I. [An EPHCA software package for statistical modeling of radiation fields of photons and charged parts.] Izv. Vuzov. Fizika, Prilozhenie, 2000, No. 4, P. 159–165 (In Russ.).


Telegin Sergey Vladimirovich – Cand. Sc., Docent, Reshetnev Siberian State Aerospace University. E-mail: telegin@sibsau.ru.

Saunin Viktor Nikolaevich – Cand. Sc., Docent, lead researcher, Reshetnev Siberian State Aerospace University. E-mail: telegin@sibsau.ru.

Draganyuk Oksana Nikolaevna – student, Reshetnev Siberian State Aerospace University. E-mail: don-oks@mail.ru.

Draganiuc Mikhail Nikolaevich – Master’s Degree student, Reshetnev Siberian State Aerospace University. E-mail: midraganyuk@yandex.ru