UDK 629.78.018.3.015
ONGROUND TESTING OF SATELLITE ATTITUDE DETERMINATION AND CONTROL SYSTEM WITH THREE-AXIS MOTION SIMULATOR
D. А. Fedchenko*, D. Е. Sinitskiy
JSC “Information satellite systems” named after academician M. F. Reshetnev” 52, Lenin str., Jeleznogorsk, Krasnoyarsk region, 662972, Russian Federation *E-mail: Dfed4enko@mail.ru
In order to increase quality and reliability of newly developed satellite attitude determination and control systems (ADCS), on-ground testing is needed during their development as well as manufacturing. Moreover, the effectiveness of ADCS testing directly depends upon the accuracy of its operating environment simulation which requires highly accu-rate simulation of environmental effects on the sensitive items of the tested system. This article describes provision of accuracy when setting input effects on the ADCS sensitive items while performing dynamic bench tests using three-axis motion simulator which design is based on three-axis Cardan assembly. The article describes the calculation procedure and the algorithm of control input generation that affects the three-axis motion simulator while simulating absolute angular rate vector for the unit measurement channels, intended to measure satellite body angular rate. Motion simulator main advantages determined by its specific design are given. The article describes main kinematic relations and method of three-axis motion simulator calibration with reference to meridian that allows to take Earth angular rotation rate effect on the unit sensitive axes while the control input, affecting the simulator, is being generated, thus increasing the simulation accuracy. The research resolves an urgent issue which on the one hand allows to increase the quality of unit output performances measurement process, on the other hand it allows to increase effectiveness of ADCS on-ground testing. Effect of uncertainties of the three-axis motion simulator on ADCS dynamic performances measurement process in a damping mode was assessed using mathematical model method. The article also demonstrates that calculated ki-nematic relations and developed control algorithms simulate satellite angular motion accurately enough. Uncertainty of angular rotation rate in the set mode does not exceed 0.1 ′/sec.
Keywords: three-axis motion simulator, attitude control system dynamic tests, control algorithm.
References

References

 

  1. Yevtif'yev M. D. Ispytaniya raketno-kosmicheskoy tekhniki [The test rocket and space technology]. Krasnoyarsk, SibSAU Publ., 2004, 308 p.
  2. Dernov S. A., Tulyakov A. M., Fedchenko D. A. [Application of HIL for ground tests of the orientation of a new generation of spacecraft]. Nauch.-tekhn. Konf. molodykh spetsialistov OAO “Informatsionnyye sputnikovyye sistemy” imeni akademika M. F. Reshetneva”
    [Scientific-technical conference of young specialists JSC “Information Satellite Systems” Academician M. F. Reshetnev”]. Zheleznogorsk, JSC “Information Satellite Systems” publ., 2008, P. 29–30 (In Russ.).
  3. Development of Air Spindle and Triaxial Air Bearing Test beds for Spacecraft Dynamics and Control Experiments/ Dennis S. Bernstein, N. Harris McClamroch, and Anthony Bloch/ Proceedings of the American Control Conference Arlington, VA June 25–27, 2001. Available at: http://ieeexplore.ieee.org/xpl/login.jsp?tp= &arnumber =946287&url=http%A%2F%2Fieeexplore.ieee.org%2 Fxpls%2Fabs_all.jsp%3Farnumber%3D946287 (accessed: 15.12.2014).
  4. Schwartz J. L., Hall C. D. The Distributed Spacecraft Attitude Control System Simulator: Development, Progress, Plans, 2003 / Flight Mechanics Symposium. Goddard Space Flight Center. – Greenbelt, Maryland, October 28–30. 2003. Available at: http://www. dept.aoe.vt.edu/~cdhall/papers/FMS03.pdf (accessed: 22.11.2014).
  5. Schwartz J. L., Hall C. D. Comparison of System Identification Techniques for a Spherical Air-Bearing Spacecraft Simulator: AAS/AIAA Astrodynamics Specialists Conference, Big Sky. – Montana, August 2003. Available at: http://www.dept.aoe.vt.edu/~cdhall/papers/ AAS03-611.pdf (accessed: 22.11.2014).
  6. Schwartz J. L., Hall C. D. System Identification of a Spherical Air-Bearing Spacecraft Simulator: AAS/AIAA Space Flight Mechanics Meeting. – Maui, Hawaii. February 2004. Available at: http://www.dept.aoe.vt.edu/~cdhall/papers/AAS04-122.pdf. (accessed: 22.11.2014).
  7. Karpenko S. O., Ovchinnikov M. Yu. Laboratorniy stend dlya polunaturnoy otrabotki sistem oriyentatsii mikro i nanosputnikov [Laboratory Facility for Testing of Micro- and Nanosatellite Attitude Control Systems]. Moscow, Preprint IMP im. M. V. Keldysheva RAN Publ., 2008. 30 p.
  8. Trekh – osevoy stend serii AC3337 [Three - axis stand Series AC3337] (In Russ.). Available at: http://www.acutronic.com/ru/produkcija/3-osevye-stendy. html (accessed: 19.08.2013).
  9. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematical Handbook for Scientists and Engineers]. Moscow, Nauka Publ., 1974, 832 p.
  10. Kalikhman D. M. Pozitsionniye upravlyaemiye stendy dlya dinamicheskikh ispytaniy giroskopicheskikh priborov [The position control stands for dynamic testing of gyroscopes]. Ed. V. G. Peshekhonova, St.Petersburg, GNTS RF TSNII “Elektropribor” Publ., 2008, 296 p.
  11. Sputnik “AMOS-5” Nazemniy otladochniy kompleks. Podsistema oriyentatsii i stabilizatsii. Programmnaya model'. Iskhodniye danniye na razrabotku [The satellite “AMOS-5” Ground debug complex. Subsystem orientation and stabilization. The programming model. The initial data for the development]. Zheleznogorsk, JSC “Information Satellite Systems” Publ., 2009, 97 p., Inv. № AMOS5.ID NA MODEL' SOS.
  12. Sinitskiy D. E., Murygin A. V. [Simulation of the propulsion system of the spacecraft in ground tests]. Sovremenniye problemy nauki i obrazovaniya. 2013, No. 5 (In Russ.). Available at: http://www.science-education.ru/111-10322 (accessed: 10.02.2015).
  13. Platforma “EKSPRESS-1000N”. Podsistema oriyentatsii i stabilizatsii. Programmnoye obespecheniye. Dokument detal'nogo proekta [The platform “Express-1000H”. Subsystem orientation and stabilization. Software. Document detailed design]. Zheleznogorsk, JSC “Information Satellite Systems” Publ., 2011, 415 p., Inv. № 765-DD-43360-ISS-00222.
  14. Beletskiy V. V. Dvizheniye iskusstvennogo sputnika otnositel'no tsentra mass [The movement of an artificial satellite of the center of mass]. Moscow, Nauka Publ., 1965, 416 p.
  15. Borisov A. V., Mamayev I. S. Dinamika tverdogo tela [Rigid body dynamics]. Izhevsk, NITS “Regulyarnaya i khaotichnaya dinamika” Publ., 2001. 384 p.
  16. Kireyev V. I., Panteleyev A. V. Chislenniye metody v primerakh i zadachakh [Numerical methods in examples and problems]. Moscow, Vyssh. Shk. Publ., 2008, 480 p.

Fedchenko Dmitry Alexandrovich – 1st category design engineer, JSC “Reshetnev Information Satellite Systems”, Е-mail: dfed4enko@mail.ru.

Sinitskiy Dmitry Evgen`evich – Cand. Sc., engineer-designer, JSC “Reshetnev Information Satellite System”. Е-mail: sderespect@gmail.com.