UDK 520.2
CALCULATION OF OPTICAL SYSTEMS FOR THE INFRARED SPECTRAL RANGE USED FOR THE DETECTION OF SMALL POCKETS OF FIRE FROM GEOSTATIONARY ORBIT
S. A. Veselkov*, E. O. Gorbatyuk, N. M. Kuzakova, A. V. Zavarzina
Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation *E-mail: рulsar1963@yandex.ru
The article discusses the possibility of detection of small fires from geostationary orbit, using optical systems oper-ating in the IR-range. In the time of the scientific and technological revolution, forest protection has become one of the most pressing is-sues. Forest fires are a powerful natural and anthropogenic factor which significantly alters the function and condition of the forest. Forest fires cause damage to the environment, the economy, and often lives are under threat. According to statistics, 93 % of all forest fires are a 10-kilometer suburban area, which means that they are the fault of the local population. Strong fires from lightning are rare, approximately 2 % of cases as a thunderstorm is usually accompanied by rain. Therefore, it is extremely important to continuously follow precisely the southern districts of the region, home to the vast number of people. With the help of a special optimization program CODE V, the optical wide-angle telescope was numerically investigated. Using a high-aperture optical system f / 1,5, allowing the CCD-matrix size 8k x 8k, get a spatial resolution of 200 m per pixel from GSO. The optical system is a system of direct focus with three-lens corrector in a converging beam. All surfaces of the lens and the main mirror are aspherical surfaces. Given are the design parameters and the quality of graphics images. There is a possibility to conduct almost continuous monitoring of large areas of the earth surface for the search of small fires – up to 1–2 hectares if you put the calculated optical system in geostationary orbit.
Keywords: optical system aberration calculation, the detection of fires from space, IR-range.
References

References

 

  1. Demin A. V., Moiseev I. M. [Evaluation of transmittance of the atmosphere on the basis of experimental data]. Izvestiya vyzov, 2012, Vol. 55, No. 5, P. 35–40 (In Russ.).
  2. Fizika kosmosa. [Physics of the Cosmos]. Ed.
    R. A. Sunyaeva. USSR, 1986, 783 p.
  3. Garbuk S. V., Gershenson V. E. Kosmicheskie sistemy DZZ [Remote-sensing systems]. Moscow, Izd. A i B Publ., 1997, 296 p.
  4. Glagolev Y. A. Spravochnik po fizicheskim parametram atmosfery [Handbook of physical parameters of the atmosphere]. Leningrad, Gidrometeoizdat Publ., 1970, 194 p
  5. ITC SCANEX Monitoring lesnyh i torfyanyh pozharov [Monitoring of forest and peat fires]. (In Russ.). Available at: www.scanex.ru/ru/data/Applications_ ScanEx_p43-47.pdf (accessed 10.11.2014).
  6. Kashkin V. B. Sukhinin A. I. Dzz iz kosmosa. Tsifrovaya obrabotka izobrazhenii [Remote sensing from space. Digital image processing]. Moscow, Logos Publ., 2001, 264 p.
  7. Petrov M. N., Yronen Y. P. [Technology assessment of damage from forest fires]. Fyndamentalnye issledovaniya, 2007, No. 2, P. 10–20 (In Russ.).
  8. Terebizh V. Y. Sovremennye opticheskie telescopy [Modern optical telescopes]. Moscow, Fizmatlit Publ., 2005, 80 p.
  9. Maksutov D. D. Astronomicheskaya optika [Astronomical optics]. Leningrad, Nauka Publ., 1979, 395 p.
  10. Michelson N. N. Optika astronomicheskih teleskopov i metody ee rascheta [Optics for astronomical telescopes and methods of its calculation]. Moscow, Fizmatlit Publ., 1995, 383 p.
  11. Zaykov V. I., Skomorovsky S. A. Lazerno-opticheskie sistemy v teplotehnicheskih izmereniyah [Laser-optical system in thermal measurements]. Komsomolsk-on-Amur, Komsomolsk-na-Amure ros. tehn. Univ. Publ., 1999, 85 p.
  12. Komppania Fluorite [The Company Fluorite]. (In Russ.) Available at: http://www.fluoride.su/index.html (accessed 10.11.2014).
  13. Emelyanov E. V. Astrofizika IK diapazona [Astrophysics IR range]. Moscow, Fizmatlit Publ., 2009, 34 p.
  14. Urman M. S. Orbitalnye metody kosmicheskoy geodezii [Orbital methods of space geodesy] Moscow, Nedra Publ., 1981, 254 p.
  15. Shovengerdt R. A. Distantsionnoe zondirovanie. Metody i modely obrabotki izobrazheniy [Remote sensing. Methods and models for image processing]. Moscow, Tehnosfera Publ., 2010, 560 p.

Veselkov Sergej Aleksandrovich – Director of Observatory, Reshetnev Siberian State Aerospace University. E-mail: рulsar1963@yandex.ru.

Gorbatuk Elena Olegovna – student, Reshetnev Siberian State Aerospace University. E-mail: lenysya-diamond@mail.ru.

Kuzakova Nina Mihailovna – student, Reshetnev Siberian State Aerospace University. E-mail: djaga_86@mail.ru.

Zavarzina Anastasia Viktorovna – student, Reshetnev Siberian State Aerospace University. E-mail: anastasia_34@bk.ru.