UDK 621.396: 629.783
DETERMINING NAVIGATION PARAMETERS OF OBJECTS UNDER THE ACTION OF INTERFERENCE OF VARIOUS ORIGINS
I. N. Kartsan1, A. S. Timokhovitch1*, T. I. Kartsan1, D. D. Dmitriev2
1Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation 2Siberian Federal University 79, Svobodny Av., Krasnoyarsk, 660041, Russian Federation *E-mail: TAStepanich@yandex.ru
The article describes the development of methods for improving the noise immunity of user’s equipment through the integration of global navigation satellite systems receivers and inertial sensors. The disadvantages of satellite navigation systems include the low reliability of angular measurements, quite a long time carrier-phase ambiguity resolution, insufficient baseline length of the interferometer which directly affect the measurement uncertainty of spatial orientation. The method of integration of sensor data with goniometric equipment of satellite navigation systems, which allows to increase the efficiency of using goniometric equipment consumer due to the fact that these systems define the parameters of the spatial position of the object. In addition, this method allows you to narrow bandwidth tracking systems satellite navigation systems to a minimum, ensuring the accuracy and noise im-munity of the close to potential. In integrated inertial-satellite navigation systems, the aggregation allow to eliminate instrumental errors, such as drift of the gyro sensors, reduces to a minimum the time of initial exhibition. The use of closely related integrated inertial-satellite navigation systems with integration on output parameters is the most appro-priate as this system parameters close to optimal and do not require substantial processing of the hardware resources. In turn, closely related system requires further development of hardware and software, like inertial navigation systems and satellite navigation systems at all levels. If such completion is impossible, for example, using imported equipment, the aggregation provides only secondary treatment or at the level of the output data. In the first case it is a loosely cou-pled system, and the second case is an open system.
Keywords: aggregation, phase shift, navigation equipment.
References

References

 

1.  Kartsan I. N., Zhukova E. S., Kartsan R. V. [Ballistic and temporary provision of satellites in different orbits]. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, [Reports of Tomsk state University of control systems and Radioelectronics]. 2012, Vol. 2, No. 2(26), P. 19–24 (In Russ.).

2.  Kartsan I. N. [The elimination method of position errors when using navigation systems]. Vestnik SibGAU. 2008, No. 3 (20), P. 101–103 (In Russ.).

3.  Kartsan I. N., Anpilogov V. N., Litoshik S. V., Zhukova E. S. [Improving the accuracy of geodetic points using the radio navigation system]. Vestnik SibGAU. 2011, No. 7 (40), Р. 68–73 (In Russ.).

4.  Onuchin O. N. Integrirovannye sistemy orientatsii i navigatsii dlya morskikh podvizhnykh objektov [Integrated system of orientation and navigation of sea mobile objects]. St. Petersburg, Elektropribor Publ., 1999, 357 p.

5.  Nesenyuk L. P., Fateev Yu. L., Barinov S. P. [Integrated inertial satellite system of orientation and navigation with spaced receiving antennae]. Giroskopiya i navigatsiya. 2000, No. 4 (31), P. 41–49 (In Russ.).

6.  Efimenko V. S., Xarisov V. N. [Adaptive spatio-temporal filtering for multichannel reception]. Radiotekhnika i elektronika, 1987, Vol. 32, No. 9, P. 1893–1901 (In Russ.).

7.  Vorokhovskiy Ya., Il’ichev V. [Highly stable low-noise quartz oscillators]. Komponenty i tekhnologii. 2005, No. 8, P. 14–19 (In Russ.).

8.  Tixonov V. I., Xarisov V. N. Statisticheskiy analiz i sintez radiotekhnicheskikh ustroystv i sistem. [Statistical analysis and synthesis of radio engineering devices and systems]. Moscow, Radio i svyaz’ Publ., 2004, 608 p. (In Russ.).

9.  Kharisov V. N. [Nonlinear filtering with multimodal posterior distribution]. Tekhnicheskaya kibernetika, 1985, No. 6, P. 147–155 (In Russ.).

10.  Kartsan I. N., Okhotkin K. G. [The effectiveness of navigation systems]. Vestnik SibGAU. 2013, No. 3(49), P. 48–50 (In Russ.).

11.  Zaytsev G. F., Stepanov V. K. Kvazioptimal’nye sledyashchie sistemy. [Quasi-optimal servo system]. Kiev, Vysshaya shkola Publ., 1984.176 p. (In Russ).

12.  Peshehonov V. G. Integrirovannye inertsial'no-sputnikovye sistemy navigatsii [Integrated inertial-satellite navigation system]. St. Petersburg, Elektropribor, 2001, 235 p. (In Russ.).

13.  Sukkarieh S. Low Cost, High Integrity Aided Inertial Navigation Systems For Autonomous Land Vehicles. Ph.D. Thesis, Univ. of Sydney, 2000, 136 p.

14.  Golovan A. A., Parusnikov N. A. Matematicheskie osnovy navigatsionnykh sistem. Ch. I. Matematicheskie modeli inertsial’noy navigatsii. [Mathematical foundations of navigation systems. Part I. Mathematical model of inertial navigation]. Moscow, MGU Publ., 2010, 126 p.

15.  Weston J. L. Basic Principles Of Strapdown Inertial Navigation Systems. Strapdown Inertial Navigation Technology. 2nd Edition. Radar, sonar, navigation and avionics, 2004, Part 3, Р. 17–59.


Kartsan Igor Nikolaevich – Cand. Sc., Docent, chief of Military institute, Reshetnev Siberian State Aerospace University. E-mail: kartsan@sibsau.ru.

Timоkhovitch Alexander Stepanovich – Cand. Sc., professor of Security of information technologies department, Institute of Informatics and telecommunications, Reshetnev Siberian State Aerospace University. E-mail: TAStepanich@yandex.ru.

Kartsan Tatyana Igorevna – master of engineering, Reshetnev Siberian State Aerospace University. E-mail: karcan-ufms@mail.ru.

Dmitriev Dmitry Dmitrievich – Cand. Sc., Docent, Docent of Military Engineering Institute, Siberian Federal University. E-mail: dmitriev121074@mail.ru.