UDK 629.7.018.4
TESTING ELECTRONIC PARTS FROM FLIGHT LOTS ON DOSE EFFECTS FOR THE HARDNESS GUARANTEE OF SPACECRAFT ONBOARD EQUIPMENT
V. M. Zykov1, Yu. V. Maximov2, I. A. Maximov2, S. G. Kochura2, V. V. Ivanov2, A. V. Patskov2*
1National Research Tomsk Polytechnic University 30, Lenin Av., Tomsk, 634050, Russian Federation 2JSC “Information satellite systems” named after academician M. F. Reshetnev” 52, Lenin St., Zheleznogorsk, 662972, Russian Federation *E-mail: patskov@iss-reshetnev.ru
The main results for radiation testing electronic parts of flight lots on dose effects of long-time low-intensive influ-ence of space ionizing radiation is observed. Such test approach provides for the given component a computational-experimental radiation design margin estimation, which is based on part's experimental radiation hardness determina-tion at the stage of the spacecraft onboard equipment acquisition. The test complex includes two Co-60 panoramic gamma apparatuses with adjustment of gamma-radiation dose rate in a range from 0,1 rad/s to 0,01 rad/s, and a do-simetry system for calibration of a gamma-radiation field in terms of the dose absorbed in silicon with uncertainty no more than 2,5 %. The results of testing bipolar parts manufactured in Russia have shown that as the dose rate decreases, radiation hardness depending on the change in the dose rate may either increase or decrease. Incidental uncontrollable changes in the production technologies of parts occurring within a period of time less than a year and causing changes in radiation hardness of parts on dose effects to an order of magnitude are found out. If the absorbed dose is less 30 krad for bipolar parts the dose rate effect can be found out on the basis of a higher recovery rate of parts parameters after irradiation at high dose rate in the course of the subsequent annealing at room or raised to 100 °С temperature. It is shown that under the conditions of the time-varying dose rate that models aftereffects of high-power Sun flash, the bipolar parts characterized by the effect opposite to ELDRS, temporary parametric failure is detected. The discovered dose effects are offered to be taken into consideration when updating the standard test methods.
Keywords: onboard equipment, spacecraft, electronic parts, flight lots, radiation test.
References

References

 

  1. Poivey C. Radiation Hardness Assurance for Space Systems Available at: http://pacs.arizona.edu/files/S021306_ Reference_Document_NSREC02_SC_Poivey.pdf (accessed 17.08.2015).
  2.  Ladbury R. Statistical Techniques for Analyzing Process or “Similarity” Data in TID Hardness Assurance. IEEE Transactions on Nuclear Science, 2010, Vol. 57, No. 6, P. 3432–3437. Cited 1 times. doi: 10.1109/TNS. 2010.2086480.
  3. Ladbury R., Gorelick J. L, McClure S. S. Statistical Model Selection for TID Hardness Assurance. IEEE Transactions on Nuclear Science, 2009, Vol. 56, No. 6, P. 3354–3360. Cited 3 times. Doi: 10.1109/TNS.2009. 2033691.
  4. Shaneyfelt M. R., Schwank J. R., Witczak S. C., Fleetwood D. M., Pease R. L., Winokur P. S., Riewe L. C., Hash G. L. Thermal-Stress Effects and Enhanced Low Dose Rate Sensitivity in Linear Bipolar ICs. IEEE Transactions on Nuclear Science, 2000, Vol. 47, No. 6, P. 2539–2545. Cited 46 times. doi: 10.1109/23.903805.
  5. Shaneyfelt M. R., Fleetwood D. M., Schwank J. R., Meisenheimer T. L., Winokur P. S. Effects of burn-in on radiation hardness. IEEE Transactions on Nuclear Science, 1994, Vol. 41, P. 2550–2559. Cited 41 times. Doi: 10.1109/23.340615.
  6. Harris R. D. TID Effects in Space-Like Variable Dose Rates. Jet Propulsion Laboratory California Institute of Technology Pasadena, California JPL Publication, 2008, P. 10.
  7. Marec R., Carlotti J. F., Marin M., Calvel P., Barillot C., Mancini R., Sarno M., Mélotte M. and Cueto J. Analysis in the Context of Space Radiation Hardness Assurance of Low Dose Rate Results Obtained With the MIL and ESCC Test Methods. IEEE Transactions on Nuclear Science, 2014, Vol. 61, No. 5, P. 2755–2740. Cited 0 times. doi: 10.1109/TNS.2014.2352856.
  8. Maksimov Yu. V., Zykov V. M. [Evaluation of dispersion stability of electronic components to the dose effect from batch to batch and within the party on the gamma complex “Radian”]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika radiatsionnogo vozdeystviya
    na radioelektronnuyu apparaturu
    . 2014, No. 1, P. 69–71 (In Russ.).
  9. GOST R ISO 16269-6-2005. Statisticheskie metody. Statisticheskoe predstavlenie dannykh. Opredelenie statisticheskikh tolerantnykh intervalov [State Standard R ISO 16269-6-2005. Statistical methods. Statistical data presentation. Determination of statistical tolerance intervals]. Moscow, Standartinform Publ., 2005. 28 p.
  10. Avdyushkin S. A., Maksimov I. A., Ivanov V. V., Kochura S. G., Kondyan S. S., Patskov A. V. [Fluctuations in the level of radiation resistance of various parties voltage reference OSM N142EN19]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika radiatsionnogo vozdeystviya na radioelektronnuyu apparaturu. 2015, No. 3, P. 22–24 (In Russ.).
  11. Barnaby H. J. Total-ionizing-dose effects in modern CMOS technologies. IEEE Transactions on Nuclear Science, 2006, Vol. 53, No. 6, P. 3103–3121. Cited 110 times. Doi: 10.1109/TNS.2006.885952.
  12. Saks N. S., Brown D. B. Interface trap formation via the two-stage H+ process. IEEE Transactions on Nuclear Science, 1989, Vol. 36, No. 6, P. 1848–1857. Cited 64 times. Doi: 10.1109/23.45378.
  13. Rashkeev S. N., Fleetwood D. M., Schrimpf R. D., Pantelides S. T. Effects of hydrogen motion on interface trap formation and annealing. IEEE Transactions on Nuclear Science, 2004, Vol. 51, No. 6, P. 3158–3165. Cited 39 times. Doi: 10.1109/TNS.2004.839202.
  14. Oldham T. R. Ionizatsionnye radiatsionnye effekty v MOP okside. [Ionization Radiation Effects in MOS Oxides]. 1999, World Scientific Publishing Co. Pte. Ltd., Singapore, P. 188.
  15. Chen X. J., Barnaby H. J., Vermeire B., Holbert K., Wright D., Pease R. L., Dunham G., Platteter D. G., Seiler J., McClure S., Adell P. Mechanisms of enhanced radiation-induced degradation due to excess molecular hydrogen in bipolar oxides. IEEE Transactions on Nuclear Science, 2007, Vol. 54, No. 6, P. 1913–1919. Cited 35 times. Doi: 10.1109/TNS.2007.909708.
  16. Chen X. J., Barnaby H. J., Adell P., Pease R. L., Vermeire B., Holbert K. E. Modeling the dose rate response and the effects of hydrogen in bipolar technologies. IEEE Transactions on Nuclear Science, 2009, Vol. 56, No. 6, P. 3196–3202. Cited 8 times. Doi: 10.1109/TNS.2009.2034154.
  17. Hjalmarson H.P., Pease R. L., B. Devine R. A. Calculations of radiation dose-rate sensitivity of bipolar transistors. IEEE Transactions on Nuclear Science, 2008, Vol. 55, No. 6, P. 3009–3015. Cited 21 times. Doi: 10.1109/TNS.2008.2007487.
  18. Rowsey N. L., Mark E. L, Ronald D. S., Daniel M. F., Blair R. T., Sokrates T. P. A Quantitative Model for ELDRS and H2 Degradation Effects in Irradiated Oxides Based on First Principles Calculations. IEEE Transactions on Nuclear Science, 2011, Vol. 58, No. 6, P. 2937–2944. Cited 7 times. Doi: 10.1109/TNS.2011. 2169458.
  19.  Rashkeev S. N., Cirba C. R., Fleetwood D. M., Schrimpf R. D., Witczak S. C., Michez A., Pantelides S. T. Physical model for enhanced interface-trap formation at low dose rates. IEEE Transactions on Nuclear Science, 2002, Vol. 49, No. 6, P. 2650–2655. Cited 71 times. Doi: 10.1109/TNS.2002.805387.
  20. Tuttle B. R., Hughart D. R., Schrimpf R. D., Fleetwood D. M., Pantelides S. T. Defect interactions of H2 in SiO2: Implications for ELDRS and latent interface trap buildup. IEEE Transactions on Nuclear Science, 2010, Vol. 57, No. 6, P. 3046–3053. Cited 5 times. Doi: 10.1109/TNS.2010.2086076.
  21. Hughart D. R., Schrimpf R. D., Fleetwood D. M., Rowsey N. L., Law M. E., Tuttle B. R., Pantelides S. T. The Effects of Proton-Defect Interactions on Radiation-Induced Interface-Trap Formation and Annealing. IEEE Transactions on Nuclear Science, 2012, Vol. 59, No. 6, P. 3087–3092. Cited 4 times. Doi: 10.1109/TNS.2012. 2220982.
  22. Rowsey N. L., Law M. E., Schrimpf R. D., Fleetwood D. M., Tuttle B. R., Pantelides S. T. Mechanisms Separating Time-Dependent and True Dose-Rate Effects in Irradiated Bipolar Oxides. IEEE Transactions on Nuclear Science, 2012, Vol. 59, No. 6, P. 3069–3076. Cited 5 times. Doi: 10.1109/TNS.2012.2222669.
  23. Johnston A., Swimm R., Harris R. D., Thorbourn D. Dose rate effects in linear bipolar transistor. IEEE Transactions on Nuclear Science, 2011, Vol. 58, No. 6, P. 2816–2823. Cited 4 times. Doi: 10.1109/TNS.2011. 2168979.

Zykov Vladimir Mikhailovich – Dr. Sc., Physical methods and quality control department, senior research officer, National Research Tomsk Polytechnic University. E-mail: vmz@tpu.ru.

Maximov Yuriy Viktorovich – postgraduate, deputy general director for quality, JSC “Information Satellite Systems” named after academician M. F. Reshetnev”. E-mail: qmaximov@iss-reshetnev.ru.

Maximov Igor Aleksandrovich – Dr. Sc., head of department, JSC “Information satellite systems” named after academician M. F. Reshetnev”. E-mail: maximov@iss-reshetnev.ru.

Kochura Sergey Grigor’evich – Cand. Sc., Docent, JSC “Information Satellite Systems” named after academician M. F. Reshetnev”, deputy general designer of electrical engineering and control systems of spacecraft. E-mail: kochura@iss-reshetnev.ru.

Ivanov Vladimir Vasil’evich – Cand. Sc., JSC “Information Satellite Systems” named after academician M. F. Reshetnev”, deputy head of department. E-mail: ivanov@iss-reshetnev.ru.

Patskov Andrey Vladimirovich – postgraduate, engineer of department, JSC “Information Satellite Systems” named after academician M. F. Reshetnev”. E-mail: patskov@iss-reshetnev.ru.