UDK 621.396.67:629.78.01
PRACTICAL POTENTIAL OF TECHNICAL COMPATIBILITY THEORY AT SPACE ENGINEERING AND RESCUE EQUIPMENT
V. V. Dvirniy1*, M. V. Elfimova2, G. V. Dvirniy1, E. G. Patskova1
1JSС “Information Satellite System” named after academician M. F. Reshetnev” 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation 2Siberian Fire and Rescue Academy of the State Fire Service of EMERCOM of Russia 1, Severnaya Str., Zheleznogorsk, 662972, Russian Federation *E-mail: dvirnyi@iss-reshetnev.ru
The paper presents the ability of a technical compatibility theory application at space engineering and rescue equipment. The examples of the miniaturization of electronic equipment in the radio-electronic products, as well as low interoperability in urban planning are given. For the solution of similar problems the corresponding scientific and en-gineering and practical capabilities of the theory of technical compatibility in relation for Emergency and rescue means were investigated. In the composition of means examined spacecrafts are considered. The concept “mechanical com-patibility” and the most problematic calculations at a design stage are described. The authors describe dynamic analy-sis theory that can be used at design phase to determinate structural robustness of construction and to calculate reso-nant frequencies and exploitation loading. The application of methods in practice to perform investigations on the basis of Lagrange equations is presented. The example design based on the theory of technical compatibility for spacecraft is given. The rules of designing of products KA where there shouldn’t be their own frequency of a design are considered in a range of frequencies of external influences. The necessity of development of precision construction with high-dimensionally is presented. The example power anisogamy mesh design for installation of SOS devices is presented. An example of the calculations for stiffness anisogamy power grid structure made of composite materials using the soft-ware is given. The values of the effective mass and frequency structure are presented. The possibility of reducing the influence of mechanical effect by increasing the mechanical strength and rigidity of components is considered.
Keywords: theory of technical compatibility, rescue tools, dynamic calculations, mathematical model of construction.
References

References

 

1.  GOST 30709–2002. Tekhnicheskaya sovmestimost’. Terminy i opredeleniya [State Standard 30709-2002. Technical compatibility. Terms and definitions], Minsk, Mezhgosud. sovet po standartizatsii, metrologii i sertifikatsii Publ., 2002, 4 p.

2.  GOST 30372–95, GOST R 50397–92. Sovmestimost’ tekhnicheskikh sredstv elektromagnitnaya. Terminy i opredeleniya [State Standard 30372–95, State Standard R 50397–92. Electromagnetic compatibility for electronic equipment. Terms and definitions], Moscow, Standartinform, 1995, 9 p.

3.  GOST 34.003–90 Informatsionnaya tekhnologiya. Avtomatizirovannye sistemy. Terminy i opredeleniya [State Standard 34. 003–90. Information technology. Automated system. Terms and definitions], Moscow, Standartinform, 1990, 17 p.

4.  Antipin M. I. Analiz i vybor ratsional’nogo provedeniya aerodinamicheskoy komponovki ekranoplana. Dis. kand. tekhnich. nauk [Analysis and rational choice of aerodynamic configuration WIG. Dis. Cand. tehn. Sci.]. Irkutsk, Irkutskiy gosudar. tehnich. univ-t Publ., 2009, 22 p.

5.  Artamonov V. S., Baskin Yu. G., Gadyshev V. A., Lozhkin V. N., Chupriyan A. P. Nadezhnost’ tekhnicheskikh sistem i tekhnogennyy risk [Reliability of technical systems and technological hazards]. 2007, Sankt-Peterburgskiy un-t Publ., 480 p.

6.  Arustamov E. A., Voloshchenko A. E., Gus’kov G. V. Bezopasnost’ zhiznedeyatel’nosti [Health and Safety]. Moscow, Dashkov i K Publ., 2001, 678 p.

7.  Bushe N. A. [et al.] Sovmestimost’ trushchikhsya poverkhnostey [Compatible rubbing surfaces], Moscow, Nauka Publ., 1981,127 p.

8.  Val’kov V. M. [et al.] Avtomatizirovannye sistemy upravleniya tekhnologicheskimi protsessami [Automated process control systems], Leningrad, Politehnika Publ., 1991, 269 p.

9.  Gell’ V. M. [et al.] Konstruirovanie i mikrominiatyurizatsiya radioelektronnoy apparatury [Design and microminiaturization electronic equipment], Leningrad Energoatomizdat Publ., 1984, 536 p.

10.     Glushkov V. M., Shihaev K. N. [Types and compatibility of management systems]. Voprosy radioelektroniki. 1971, No. 24(3), P. 9 (In Russ.).

11.  Chebotarev V. E. [et al.] Osnovy proektirovaniya kosmicheskikh apparatov informatsionnogo obespecheniya [Basics of spacecraft design information support]. Krasnoyarsk, SibSAU Publ., 2011, 488 p.

12.  Smerdov A. A. [The sensitivity analysis in the design of composite space structures dimensionally]. Inzhenernyy zhurnal: Nauka i innovatsii, 2013, No. 7, 15 р. (In Russ.).

13.  Smerdov A. A. Razrabotka metodov proektirovaniya kompozitnykh materialov i konstruktsiy raketno-kosmicheskoy tekhniki: Dis. d-ra tekhn. nauk [Development of methods for the design of composite materials and structures rocket and space technology. Dr. eng. sci. dis]. Moscow, 2008. 41 р.

14.  Patskova E. G., Iseeva O. A., Bikmaev R. I., Filimonov I. V., Sharnin A. E. [Development of precision design for precision equipment]. Materialy XVII Mezhdunarodnoy nauchnoy konferentsii, posvyashchennoy pamyati general’nogo konstruktora raketno-kosmiches-
kikh sistem akademika M. F. Reshetneva “Reshetnevskie chteniya”
[Proceedings of the XVII International Scientific Conference dedicated to the memory of General Designer of rocket and space systems Academician M. F. Reshetnev “Reshetnev Readings”], Krasnoyarsk, SibSAU Publ., 2013, P. 90–91.

15.  Andronov A. I. et al. Setchataya obolochka vrashcheniya iz kompozitsionnykh materialov [Retina of rotation of composite materials]. Patent RF, no 2392122, 2009.

16.  Vasil’ev V. V., Barynin V. A., Razin A. F., Petrokovskiy S. A., Khalimanovich V. I. [Anizogridnye composite mesh design – development and application of space technology]. Kompozity i nanostruktury, 2009, No. 3, P. 38–50 (In Russ.).

17.  Nosenkov A. A. Tehnicheskaya sovmestimost: praktika, nauka, problemy [Technical interoperability: the practice, science, problem]. Krasnoyarsk, SibSAU Publ., 2005, 136 p.


Dvirniy Valery Vasilevich – Dr. Sc., professor, JSC “Information satellite systems” named after academician
M. F. Reshetnev”. E-mail: dvirnyi@iss-reshetnev.ru.

Elfimova Marina Vladimirovna – Cand. Sc., lieutenant colonel of Internal Affairs, deputy chief of Siberian Fire and Rescue Academy for Academic Affairs, Ministry of extremely cases of Russian Siberian Fire and Rescue Academy, branch of St. Petersburg University of State Fire Service of EMERCOM of Russia. E-mail: elfimova@mail.ru.

Dvirniy Guriy Valeryevich – Cand. Sc., JSC “Information satellite systems” named after academician
M. F. Reshetnev”. E-mail: dg1802@mail.ru.

Patskova Elena Georgievna – engineer, JSC “Information satellite systems” named after academician
M. F. Reshetnev”. E-mail: lenysik1404@mail.ru.