UDK 621.396.67:629.78.01
MODEL OF MOISTURE ABSORPTION MATERIALS USED IN THE MANUFACTURE OF SPACECRAFT ANTENNAS
I. V. Bashkov1, R. А. Ermolaev1, 2, А. B. Kuznetsov1, A. E. Miheev2*, A. V. Girn2
1JSC “Information satellite systems” named after academician M. F. Reshetnev” 52, Lenin St., Zheleznogorsk, 662972, Russian Federation 2Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation *Е-mail: michla@mail.ru
In this case study the processes occurring in finding the polyimide films and carbon plastic in the air with different humidity have been analyzed. Various polymeric materials including polyimide film and carbon fiber are used in space-craft (SC) manufacture. For achievement of desired radio characteristics for composite reflector antennas are coated with a thin reflective metal layer, usually aluminum. It is necessary to know the volume of moisture contained in the bulk material, for elimi-nation of corrosion risk for the sprayed layer. In case of moisture-absorption of the polyimide film and CFRP, the diffusion of water molecules contained in the atmosphere into the material occurs. Fick’s mathematical model is used to determine the amount and sorption kinetics of moisture contained in the ambi-ent air. On the basis of the Fick's equation and conditions arising in the construction of models for thin polymeric mate-rials the equation for calculating the dynamics of moisture absorption polymeric materials was obtained. According to the resulting model of moisture absorption, the diffusion coefficients of materials by thermo gravimet-ric analysis and comparison of the results obtained, with this model can be determined. The production and selection of material with low moisture absorption value is a trans-promising direction in mate-rials applied to the rocket and space industry. The materials with a small amount of moisture absorbed by the SC allow a longer active life (CAC) and the need for future up-formulations, in particular – with cryogenic equipment.
Keywords: Polyimide film, carbon fiber, diffusion, sorption.
References

References

 

1.  Testoedov N. A., Dvirnyy G. V., Permyakov M. Yu. [Determination of the thermal deformation of dimensionally reflectors]. Vestnik SibGAU. 2011, No. 2(35), P. 67–70 (In Russ.).

2.  Manuylov K. K. [Study of thermal and mechanical characteristics of the composite screen-vacuum heat insulation]. Preprinty IPM im. M. V. Keldysha, 2015, No. 53, 16 p. (In Russ.).

3.  Mikhal’chenko R. S., Grigorenko B. V., Getmanets V. F., Kurskaya T. A. Vliyanie tolshchiny kriokondensata na radiatsionnye kharakteristiki ekrana teplo-izolyatsii [Influence of thick-ness pyrocondensate on the radiation characteristics of the screen insulation]. Khar’kov, FTINT, 1988, 14 p.

4.  Tsenoglou C. J., Pavlidou S., Papaspyrides C. D. Evaluation of interfacial relaxation due to water absorption in fiber–polymer composites. Composites Science and Technology, 2006, Vol. 66, No. 15, P. 2855–2864.

5.  Startsev O. V., Kuznetsov A. A., Krotov A. S., Anikhovskaya L. I., Senatorova O. G. [Modelling of moisture in laminated plastic and fiberglass]. Fizicheskaya mezzomekhanika. 2002, Vol. 5, No. 2, P. 109–114 (In Russ.).

6.  Melekhina M. I., Kavun N. S., Rakitina V. P. [Fiberglass epoxy with improved moisture resistance and water resistance]. Aviatsionnye materialy i tekhnologii. 2013, No. 2, P. 29–31 (In Russ.).

7.  Sala G. Composite degradation due to fluid absorption. Composites Part B. 2000, Vol. 31, No. 5, P. 357–373.

8.  Shen C. H., Springer G. S. Moisture Absorption and Desorption of Composite Materials. Journal of Composite Materials, 1976, Vol. 10, P. 2–20.

9.  Yuichiro Aoki, Ken Yamada, Takashi Ishikawa. Effects of water absorption and temperature on compression after impact (cal) strength of CFRP laminates. 16th international conference  on composite materials, 2007, 7 p.

10.  Hyojin Kim, Kenichi Takemura. Influence of water absorption on creep behaviour of carbon fiber/epoxy laminates. Procedia Engineering, 2011, Vol. 10, P. 2731–2736.

11.  Grot S., Mauzer P. Neravnovesnaya termodinamika [Non-equilibrium thermodynamics]. Moscow, Mir Publ., 1967, 456 p.

12.  Reytlinger S. A. Pronitsaemost’ polimernykh materialov [The permeability of the polymeric material]. Moscow, Khimiya Publ., 1974, 269 p.

13.  Manin V. A., Gromov A. N., Kovalkin M. A. Nadezhnost’ i dolgovechnost’ polimernykh materialov i izdeliy iz nikh [Reliability and durability of polymer materials and products from them]. Moscow, 1953, 85 p.

14.  Norton F. J. Gas permeation through lexan polycarbonate resin. Journal of Applied Polymer Science, 1963, Vol. 7, No. 5, P. 1649–1659.

15.  Eschbach H., Jaeckel R., Muller D. Z. Permeability of polymeric materials. Naturforsch, 1963, 18a, 434 p.


Bashkov Ivan Valer’evich – postgraduate student, Reshetnev Siberian State Aerospace University.

Ermolaev Roman Alexandrovich – Cand. Sc., deputy chief of the division № 370, JSC “Information Satellite Systems” named after academician M. F. Reshetnev”.

Kuznetsov Alexander Borisovich – Head of Group Division of Materials, JSC “Information Satellite Systems” named after academician M. F. Reshetnev”.

Miheev Anatolii Egorovich – Dr. Sc., professor, head of Flying vehicles department, Reshetnev Siberian State Aerospace University. E-mail: michla@mail.ru.

Girn Aleksei Vasilyevich – Cand. Sc., Docent, Docent of Flying vehicles department, Reshetnev Siberian State Aerospace University. E-mail: girn007@gmail.com.