UDK 62-501.6 Vestnik SibGAU. 2014, No. 3(55), P. 55–62
N. D. Demidenko [1], L. V. Kulagina [2]
1Special Design and Technological Bureau “Nauka” Krasnoyarsk Scientific Centre of Siberian Branch Russian Academy of Sciences, 50, Akademgorodok, 660036, Krasnoyarsk, Russian Federation 2Siberian Federal University 79, Svobodny prosp., 660041, Krasnoyarsk, Russian Federation Е-mail: klvation@gmail.com
The article presents a method of simulation and optimal control for rectification plants, containing technological furnaces and rectification columns. This complicated system is shown as a system with distributed parameters, as for static and dynamic modes simulation a mathematical formalism of differential equations in partial differential was ap-plied. As a rule scientific literature deals with operation modes outcomes for single plants. Due to complicated mathe-matical formalism and computation investigations dealing with a number of objects with distributed parameters are infrequently. The optimal control tasks solutions for complicated plants are poorly shown in scientific literature A phe-nomenological approach was applied for mathematical model of heat processes in technological furnaces and separa-tion processes in multicomponent mixtures for rectification columns. The model contains partial differential equitations for heat- and mass-exchange processes and hydrodynamics for flue gas flows in technological furnace and mass-exchange equitations for rectification column. Described processes occurs with recirculation flow interaction and heat- exchange processes' boundary conditions for rectification columns are described in ordinary derivatives. The condi-tions are given at the opposite ends of the plant. The optimal control modes solutions were formulated an optimal con-trol task for desired product and necessary conditions for optimality. Due control functions are included in the main boundary derivatives, control variations in the range and on the boundary are dependent, this works on dual problem structure. Arguments of variational calculus was applied. Necessary conditions for optimality are containing original boundary-value problem conjugated relatively to the Lagrangians. Original and boundary tasks solution determines optimal control and technological processes parameters. The article gives numerical outcomes with control of flow of raw materials in debutanizer plant for sulfuric acid alkylation of isobutane with butenes. A numeric algorithm was worked out. The peculiarity of the algorithm is solving a boundary conditions tasks for some parameters at the opposite ends of the area. Moreover Lagrangians for conjugated system are given at a finite time. Optimal characteristics of heat-exchange process of desired product in the dephlagmator and cube were obtained.
mathematical modeling, systems with distributed parameters, optimal control, heat-and-mass exchange.

1.   Demidenko N. D. [Modelirovanie staticheskih i dinamicheskih rejimov v trubchatih pechah]. Upravlenie, vichislitel’naya technika i informatica. Vestnik Tomskogo gosudarstvennogo universiteta. 2012, no. 3(20), p. 13–21. (In Russ.)

2.   Demidenko N. D., Kulagin V. A., Shokin Y. I. Modelirovanie i vichislitel’nie tehnologii raspredelenih sistem. [Simulation and Computing Technologies for Distributed Systems]. Novosibirsk, Nauka Publ., 2012, 424 p.

3.   Demidenko N. D. [Optimal’noe upravlenie rejimami technologicheskih pechei]. Vestnik SibGAU. 2013, no. 3 (49), p. 182–187. (In Russ.)

4.   Demidenko N. D., Kulagina L. V. [Chisleniy metod isledovaniya stacionarnih rejimov v technologicheskih pechah]. Journal of Siberian Federal University. Engineering & Technologies. 2014, Vol. 7, Issue 1, p. 55–61. (In Russ.)

5.   Demidenko N. D., Kulagina L. V., Mel'nik I. N. [Non-stationary modes analysis in control and management systems with distributed parameters]. Informatika I sistemi upravleniya. 2004, no. 5, p. 135–144. (In Russ.)

6.   Demidenko N. D., Kulagina L. V. [Optimal control of the operation modes in technological furnaces for refining industry]. Fundamental'nie issledovaniya. 2005, no. 2,
p. 43–44. (In Russ.)

7.   Demidenko N. D. Modelirovanie i optimizaciya teplo-masoobmehhih procesov v chimicheskoy technologiy. [Simulation and Optimization for Heat- Mass-exchange Processes in the Chemical Engineering] Moscow, Nauka Publ., 1991, 240 p.

8. Demidenko N. D., Kulagina L. V. [Means and facilities for optimal control of the technological processes in tube furnaces]. Himicheskoe i neftegezovoe machinostroenie. 2006, no. 3, p. 8–9. (In Russ.)

9. Demidenko N. D., Potapov V. I., Shokin U. I. Modelirovanie i optimizaciya sistem s raspredelennimi parametrami [Simulation and optimization for systems with distributed parameters]. Novosibirsk, Nauka Publ., 2006, 551 p.

10. D'yakonov S. G., Elizarov V. I., Laptev A. G. Matematicheskie osnovi i modelirovanie procesov razdeleniya veshestv [Mathematical foundations and simulation of processes of separation of substances]. 1993, Kazan, Kazan University Publ., 437 p.

11. Shahtahtinskiy Т. N., Kelbaliev G. I. [Analogie and similarity of non-stationary processes of convective heat-
and mass-transfer]. Doklady RAN. 1990, Vol. 315, no. 6,
p. 1427–1429. (In Russ.)

12. Kafarov V. V., Gromov V. U., Matveikin V. G. [Tasks of objects' management in chemical engineering while fuzziness] Doklady RAN. 1994, Vol. 337, no. 5,
p. 628–630. (In Russ.)

13. Kafarov V. V., Gromov V. U., Matveikin V. G. [Mathematical simulation for not fully observed chemical and technological properties]. Doklady RAN. 1994,
Vol. 337, no. 1, p. 68–69. (In Russ.)

14. Samarskiy А. А., Mihailov А. P. Matematicheskoe modelirovanie: idei, metodi, primeri [Mathematical simulation: ideas, methods, examples]. Moscow, Fizmatlit Publ., 2001, 320 p. (In Russ.)

15. Dvoreckiy S. I., Egorov А. F., Dvoreckiy D. S. Komp'uternoe modelirovanie i optimizaciya tehnologicheskih procesov I oborudovaniya [Computer simulation and optimization of industrial processes and hardware]. Tambov, Tambov. State. tehn. University Publ., 2003, 224 p.

16. Demidenko N. D., Kulagina L. V. [Features of fuel burning in the technological furnaces]. Chimicheskaya technika. 2006, no. 7, p. 35–37. (In Russ.)

17. Kulagina L. V. [Ingerente and liquidity tasks in perspective power generation systems]. Materialy Vseros. nauchyu-praktyu konf. “Sotsial'nyye problemy inzhenernoy ekologii, prirodopol'zovaniya i resursosberezheniya”. Vyp. IX. [Proceedings of All-Russia. Teach-practical conference “Social problems of engineering ecologie, environmental management and resource saving”]. Issue. IX, Krasnoyarsk, Krayevoye NTO Publ., 2003, p. 45–56. (In Russ.)

18. Demidenko N. D. Upravlyaemie raspredelennie sistemi [Controlled distributed systems]. Novosibirsk, Nauka Publ., 1999, 392 p. (In Russ.)

19. Demidenko N. D., Kulagina L. V. [Improving the efficiency and environmental security of fuel combustion in industrial plants]. Materialy VI Vseros. nauch.-prakt konf. “Energoefectivnost' sistem jizneobespecheniya goroda” [Proceedings of the VI All-Russia. scientific-practical conference “Energy efficiency of city life-support systems”]. Krasnoyarsk, IPTS KGTU Publ., 2005, p. 276–281. (In Russ.)

20. Kulagina L. V. [Analysis of thermal and hydrodynamic processes during combustion of different fuels in the power boiler KV-TM-180-150-25] Materiali Vseros. nauch.-prakt konf. “Social'nie problemi injenernoy ekologii, prorodopol'zovaniya iresursosberejeniya” [Materials Vseros. scientific-practical conference “Social problems of environmental engineering, environmental management and resource saving”]. Issue. X. Krasnoyarsk, 2004, p. 29–45. (In Russ.)

Demidenko Nikolay Danilovich – PhD, full professor, Head scientist researcher, SDTB “Nauka” KSC SB RA. E-mail: klvation@gmail.com

Kulagina Liudmila Vladimirovna – PhD, associated professor, Siberian Federal University. E-mail: klvation@gmail.com