UDK 528.8; 551.46
INVESTIGATION OF GRADIENT FIELDS OF THE EARTH SURFACE BASED ON SATELLITE DATA
A. V. Kartushinsky1,2*, N. A. Kukoba1
1Siberian Federal University 79, Svobodny Av., Krasnoyarsk, 660041, Russian Federation 2Institute of Biophysics SB RAS 50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation *E-mail: kartalvas@rambler.ru
To determine the horizontal structure of the physical and biological heterogeneities calculated are time-space gra-dients based on long-term satellite data. AVHRR MCSST, CZCS, SeaWIFS, MIRAS AQUARIUS, MODIS, MSS and NOAA, TERRA, AQUA, SPOT, LANDSAT picture images were used as input satellite data. Satellite data was used to calculate mean gradient fields of temperature, salinity and chlorophyll concentration in the ocean for different periods of time. The software calculates and averages the horizontal gradients in the ocean for different grids. Calculations are also made to find zonal, meridian, and absolute gradients, pointing to main frontal zones. The gradient fields and their high values give us information about spatial distribution of main frontal zones in the ocean. For study of the gradient field surface in aquatic systems realized is the averaging algorithm for dynamic object. Gradient of land surface shows changes of relief as steady state object. Space-time variability of gradient fields in the ocean has been received. Here we used satellite data on sea surface temperature, sea surface salinity and chlorophyll concentration. The main stage of research is evaluation of statistical correlation between gradients of temperature and chlorophyll concentration, which suggests a combined effect of physical and biological processes. Horizontal temperature and turbidity fields were con-sidered for small object as Lake Shira (Russia, Khakasia) based on satellite data. Gradient zones of land relief were tested on satellite images. In this case, software ENVI 4.7 and IDL were used to calculate absolute (modulo) gradients surface height. Though idealized, our results suggest the importance of surface gradient parameters for the measuring from space.
Keywords: calculation of gradients, sea surface frontal zones, the interaction of physical and biological fields, sur-face heterogeneity, variability.
References

References

 

1. Shovengerdt R. A. Distantsionnoe zondirovanie. Modeli i metody obrabotki izobrazheniy. [Remote sensing. Models and methods for image processing]. Moscow, Tekhnosfera Publ., 2010. 560 p.

2. Chandra A. M., Gosh S. K. Distantsionnoe zondirovanie i geograficheskie informatsionnye sistemy. [Remote sensing and geographic information systems]. Moscow, Tekhnosfera Publ., 2008. 312 p.

3. Jahne B. Tsifrovaya obrabotka izobrazheniy. [Digital image processing]. Moscow, Tekhnosfera Publ., 2007. 584 p.

4. Tsifrovaya obrabotka signalov i izobrazheniy v radiofizicheskikh prilozheniyakh. [Digital signal and image processing applications in radiophysics]. Ed. V. F. Kravchenko. Moscow, Fizmatlit Publ., 2007, 544 p.

5. Kashkin V. B., Sukhinin A. I. Distantsionnoe zondirovanie Zemli iz kosmosa. Tsifrovaya obrabotka izobrazheniy. [Remote sensing from space. Digital image processing]. Moscow, Logos Publ., 2001, 264 p.

6. Kobernichenko V. G., Trenikhin V. A. [Methods of synthesis of images based on remote sensing data of different resolution]. Uspekhi sovremennoy radioelektroniki. 2007, No. 4, P. 22–31 (In Russ.).

7. Asmus V. V., Buchnev A. A., Krovotyntsev V. A., Pyatkin V. P., Salov G. I. [PlanetaMonitoring The software package of satellite data processing]. Problemy informatiki. 2013, No. 3, P. 85–99 (In Russ.).

8. Griffiths P., Kuemmerle T., Baumann M., Radeloff V. C., Abrudan I. V., Lieskovsky J., Munteanu C., Ostapowicz K., Hostert P. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sensing of Environment. 2014,
Vol. 151, P. 72–88.

9. Andreev S. N., Firsov V. G. [Synthesis of neural network and holographic methods of processing remote sensing data]. Geliogeofizicheskie issledovaniya. 2014, No. 9, P. 23–29 (In Russ.).

10 Griffiths P., Kuemmerle T, Kennedy R. E., Abrudan I. V., Knorn J., Hostert P. Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sensing of Environment. 2012, Vol. 118. P. 199–214.

11. Kritsuk S. G. [Mapping the boreal forests from satellite data (for example, specially protected areas of the Leningrad region)]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2012, Vol. 9,
No. 4, P. 255–264 (In Russ.).

12. Lavrova O. Yu., Mityagina M. I., Uvarov I. A. [Identification and recognition of different types of water in the coastal zone of the Black Sea and in the lakes of the Crimea on the basis of the analysis of hyperspectral data]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2014, Vol. 11, No. 1, P. 135–147 (In Russ.).

13. Ingebrigtsen R., Lindgren F., Steinsland I. Spatial models with explanatory variables in the dependence structure. Spatial Statistics. 2014, Vol. 8, P. 20–38.

14. Nomikou P., Parks M. M., Papanikolaou D., Pyle D. M., Mather T. A., Carey S., Watts A.B., Paulatto M., Kalnins M. L., Livanos I., Bejelou K., Simou E., Perros I. The emergence and growth of a submarine volcano:
The Kameni islands, Santorini (Greece). GeoResJ. 2014, Vol. 1–2, P. 8–18.

15. Polyakova E. V., Gofarov M. Yu. [The morphometric analysis of the topography of the island Vaigach on remote sensing data]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2014, Vol. 11, No. 1, P. 226–234 (In Russ.).

16. Baranov Yu. B., Goryaynov M. S., Kantemi-
rov Yu. I., Kiselevskiy E. V., Kulapov S. M., Nokhrin V. A. [Advantages of space radar systems in carrying out mine surveying work in the oil and gas fields (example of Yuzhno Russkoe field)]. Geomatics, 2011, No. 1, P. 12–15 (In Russ.).

17. Strugaylo V. V. [Review of methods of filtering and segmentation of digital images]. Nauka i obrazovanie. 2012, No 5. (In Russ.) Available at: http://technomag.edu.ru/doc/411847.html (accessed 15.04. 2015).

18. Kartushinsky A. V., Time-Space Structure and Variability of Surface Temperature frontal Zones in the Ocean. Advances in Space Research. 2000, No. 25(5),
P. 1107–1110.

19. Kartushinsky A. V. The investigation on the dynamics of frontal zones in the ocean based on the numerical modelling, using the AVHRR satellite data. Advances in Space Research. 2004, No. 33 (7), P. 1173–1178.

20. Kaz’min A. S. [The variability of large-scale oceanic frontal zones: a global analysis of satellite data]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2012, Vol. 9, No. 1, P. 213–218 (In Russ.).

21. Kartushinsky A. V. Dynamic Features of Frontal Zones Structure in the Ocean for Using in the Numerical Models Based on Satellite Data. Journal of Siberian
Federal University.
Mathematics & Physics. 2011,
No. 4 (2), P. 208–216.

22. Kartushinsky A. V., Sidorenko, A. Y. Analysis of the variability of temperature gradient in the ocean frontal zones based on satellite data. Advances in Space Research. 2013, No. 52 (8), p. 1467–1475.

23. Byshev V. I., Neyman V. G., Romanov Yu. A., Serykh I. V. [Global atmospheric oscillations in the dynamics of the current climate] Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2014, Vol. 11, No 1, P. 62–71 (In Russ.).

24. Shevyrnogov A., Vysotskaya G., Shevyrnogov E. Results of analysis of spatial and temporal long-term stability of quasistationary areas in the global ocean based on multi-satellite measurements (CZCS and SeaWifs data). Advances in Space Research. 2004, Vol. 33,
P. 1184–1188.

25. Krivtsov V., Jago C. F. Some aspects of phytoplankton and ecosystem modelling in freshwater and marine environments: consideration of indirect interactions, and the implications for interpreting past and future overall ecosystem functioning. In: Ecological Modeling Chapters (ed. W.-J. Zhang). NovaScience. 2011, P. 205–222.

26. Sherman K., Belkin I., Friedland K.D., O’Reilly J. Changing states of North Atlantic large marine ecosystems. Environmental Development. 2013, No. 7, P. 46–58.

27. Kazmin A. S., Rienecker M. M. Variability and frontogenesis in the large-scale oceanic frontal zones.  Journal of Geoph. Res.: Oceans. 1996, Vol. 101, C1,
P. 907–921.

28. Doronin Yu. P. Fizika okeana [Ocean physics]. St. Petersburg, RSHU Publ., 2000, 298 p. (In Russ.).

29. European space agency. SMOS. Available at:  http://www.esa.int/Our_Activities/Observing_the_Earth/SMOS (accessed 08.03.2013).

30. Burenkov V. I., Gol’din Yu. A., Artem’ev V. A., Sheberstov S. V. [The optical characteristics of the waters of the Kara Sea based on ship and satellite observations].  Oceanology. 2010, Vol. 50, No. 5, P. 716–729 (In Russ.).

31. Burenkov V. I, Gol’din Yu. A, Kravchishina M. D. [The distribution of the suspended matter concentration in the Kara Sea in September 2007 based on ship and satellite data]. Oceanology. 2010, Vol. 50, No. 5, P. 842–849 (In Russ.).

32. Shevyrnogov A. P., Kartushinsky A. V, Vysotskaya G. S. Application of satellite data for investigation of dynamic processes in inland water bodies: Shira Lake (Khakasia, Siberia), a case study. Aquatic Ecology. 2002, Vol. 36, No. 2, P. 153–163.

33. Glukhovets D. I., Gol’din Yu. A. [A study of the bio-optical properties of the Kara Sea using satellite data and shipboard measurements]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2014, Vol. 11, No. 4, P. 346–350 (In Russ.).

34. Lacaux J. P., Tourre Y. M., Vignolles C., Ndione J. A., Lafaye M. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sens. Environment. 2007, Vol. 106, P. 66–74.

35. Gardelle J. Hiernaux P. Kergoat L., Grippa M. Less rain, more water in ponds: a remote sensing study of the dynamics of surface waters from 1950 to present in pastoral Sahel (Gourma region, Mali). Hydrol. Earth Syst. Sci. 2010, Vol. 14, P. 309–324.


Kartushinsky Aleksey Vasil’evich – Cand. Sc., Docent, Institute of Space and Information Technologies, Siberian Federal University; senior researcher, Institute of Вiophysics RAS. E-mail: kartalvas@rambler.ru.

Kukoba Nikolay Andreevich – postgraduate student, Institute of Space and Information Technologies, Siberian Federal University. E-mail: ku-ru07@inbox.ru.