UDK 517.55 Vestnik SibGAU. 2014, No. 3(55), P. 48–54
GOLDSHTIK’S PROBLEM OF PASTING OF VORTICAL CURRENTS OF AN IDEAL LIQUID IN THE AXIALLY SYMMETRIC CASE
I. I. Vainshtein, I. M. Fedotova
Institute of space and information technologies of Siberian Federal University 26, Kirenskogo St., ULK building, Krasnoyarsk, 660074, Russian Federation Е-mail: web.ikit@sfu-kras.ru
We consider that axially symmetric model of vortical flows of an ideal incompressible liquid with discontinuous nonlinear vorticity. The proposed model is a generalization of the Lavrentev’s scheme planar separated flows of an ideal fluid for the axially symmetric case. In terms of the the flow function we solve the Dirichlet problem for the inhomogeneous elliptic Euler-Poisson-Darboux equation with discontinuous nonlinearity is relative to the decision in the right part of the equation. This problem is a generalization of the well-known problem of Goldshtik of pasting planar vortical and potential flows of an ideal liquid on the axially symmetric case. The existence of the so-called trivial solution, which corresponds to the potential flows in the whole domain is shown. On a model example (flow in the ball) we establish the existence of two non-trivial solutions. For the general case of the problem we prove the existence of a nontrivial solution, indicating the existence of this class of axially symmetric vortical flows of an ideal liquid. In the model it is assumed that the stationary flow of an ideal liquid is a limiting flow of a viscous with viscosity tends to zero.
vortical and potential flows, vorticity, Goldshtik’s Problem, trivial decision, Green’s function, integral equation.
References

1. Gol'dshtik M. A. Vihrevye potoki [Vortex flows]. Novosibirsk, Nauka Publ., 1981, 365 p.

2. Lavrent'ev M. A., Shabat B. V. Problemy gidrodinamiki i ih matematicheskie modeli [Problems of hydrodynamics and their mathematical models]. Moscow, Nauka Publ., 1973, 416 p.

3. Vainshtein I. I. [On a boundary problem of vortex and potential flows of an ideal fluid in the axially symmetric case]. Differentsial'nye uravneniya. 1970,
vol. 6, no. 1, p. 109–122. (In Russ.)

4. Vainshtein I. I. Dvizhenie ideal'noy zhidkosti s zavihrennymi zonami: dis.… kand. fiz.-mat. nauk [Motion of ideal fluid with vorticity zones: Diss. on competition of a scientific degree of the candidate of phys. and math. sci.]. Novosibirsk, 1972, 125 p.

5. Vainshtein I. I., Yurovskiy V. K. [On a problem of conjugation of vortical flows of ideal fluid]. Zhurn. prikl. meh. i tehn. fiz. 1976, no. 5, p. 98–100. (In Russ.)

6. Gol'dshtik M. A. [Mathematical model of separated flows of an incompressible fluid]. Dokl. AN SSSR. 1962, vol. 147, no. 6, p. 1310–1313. (In Russ.)

7. Vainshtein I. I. [Solution of two dual problems
of gluing eddy currents and potential variational
M. A. Goldshtik’s method]. Zhurn. SFU. Ser. Matem.
i fiz
. 2011, 4(3), p. 320–331. (In Russ.)

8. Potapov D. K. [The number of solutions for a class of elliptic equations with a spectral parameter and discontinuous nonlinearity]. Dal'nevost. matem. zhurn. 2012, vol. 12, no. 1, p. 86–88. (In Russ.)

9. Vainshtein I. I., Gol'dshtik M. A. [On the motion of an ideal fluid in the Coriolis forces]. Dokl. AN USSR. 1967, vol. 173, no 6, p. 1277–1280. (In Russ.)

10. Shabat A. B. [A scheme for plane motion in the presence of liquid at the bottom of the trench]. Zhurn. prikl. meh. i tehn. fiz. 1962, no. 4, p. 68–80. (In Russ.)

11. Shabat A. B. [Two problems pasting]. Dokl. AN SSSR. 1963, vol. 150, no. 6, p. 1242–1245. (In Russ.)

12. Antontsev S. N., Lelyuh V. D. [Some problems of conjugation of vortex and potential subsonic flows]. Dinamika sploshnoy sredy. Novosibirsk, 1969, vol. 1,
p. 134–153. (In Russ.)

13. Plotnikov P. I. [On the solvability of a class on the gluing of potential and vortex flows]. Dinamika sploshnoy sredy. Novosibirsk, 1969, vol. 3, p. 61–69.
(In Russ.)

14. Vainshtein I. I. [The dual problem to M. A. Gold-
shtik with arbitrary vorticity]. Zhurn. SFU. Ser. Matem.
i fiz.
2010, no. 3(4), p. 500–506 (In Russ.)

15. Vainshtein I. I., Fedotova I. M. [The dual problem to M. A. Goldshtik with unlimited vorticity]. Zhurn. SFU. Ser. Matem. i fiz. 2012, no. 5(4), p. 515–526. (In Russ.)

16. Vainshtein I. I., Litvinov P. S. [Model to M.A. Lavrentiev about gluing of vortex and potential flows of liquid]. Vestnik SibGAU. 2009, vol. 24, no. 3, p. 7–9.
(In Russ.)

17. Vasin A. V., Timofeeva O. A. [Finding the line of domains with the potential and vortex flow]. Zhurnal Universiteta vodnyh kommunikatsiy. 2012, vol. 2 (14),
p. 8–13. (In Russ.)

18. Potapov D. K. [About Solutions of Problem to Goldshtik]. Sib. zhurn. vychisl. matem. 2012, no. 15(4),
p. 409–415. (In Russ.)

19. Tersenov S. A. Vvedenie v teoriyu uravneniy vyrozhdayuschihsya na granitse [Introduction to the theory of equations degenerating on the boundary]. Novosibirsk, 1973. 144 p.

20. Gradshtein I. S., Ryzhik I. M. Tablitsa integralov, summ, ryadov i proizvedeniy [Table of integrals, series and products]. Moscow, Fizmatgiz Publ., 1963, 1100 p.

21. Lebedev N. N. Spetsial'nye funktsii i ih prilozheniya [Special functions and their applications]. Moscow, Gostehizdat Publ., 1953, 190 p.

22. Karol' I. L. [On the theory of boundary value problems for equations of mixed elliptic-hyperbolic type]. Matem. sb. 1956, vol. 38(80), no. 3, p. 261–282.
(In Russ.)


Vainshtein Isaak Iosifovich – Candidate of Physical and Mathematical Sciences, associate professor, Professor of Applied Mathematics and Computer Security Department, Institute of Space and Information Technologies, Siberian Federal University. E-mail isvain@mail.ru

Fedotova Irina Michailovna – Candidate of Physical and Mathematical Sciences, associate professor of Applied Mathematics and Computer Security Department, Institute of Space and Information Technologies, Siberian Federal University. E-mail firim@mail.ru