UDK 629.78.05
DETERMINATION OF MECHANICAL PROPERTIES OF MATERIALS OF HIGH PRESSURE METAL-XENON TANK
E. V. Aniskovich*, V. I. Seredin
Special Design and Technological Bureau “Nauka” Krasnoyarsk Scientific Centre of SB RAS 53, Mira Av., Krasnoyarsk, 660049, Russian Federation *E-mail: plaza1@mail.ru
Presented are the results of determining the strength characteristics of mechanical properties of the metal-xenon high-pressure tank materials by means of experimental studies on the static tensile specimens cut from the titanium liner and experimental studies on a cross-four-point bending specimens of composite material cut from the power of the composite shell of the tank. Based on the concluded experimental studies, design study to assess the additional charac-teristics of mechanical properties of materials has been made. To study the thin-walled welded titanium alloy composite material and the container shell power plane and tensile samples were cut parallel and transverse rolled metal tank. During tensile tests automatic recording of strain diagram with the coordinates of load-displacement was conducted. For the experimental studies of composite strength composite shell tank samples were cut from the two zones of the tank near the top of the flange and the region near the equator of the middle part of the tank. Samples from the top of the angle were characterized by winding tapes –30...+30, samples from the equator – –12…+12. During the tests on the transverse four-point bending load speed measurement sample with the corresponding value of displacement was applied. According to the results of tests of samples prepared from a titanium alloy obtained were the yield strength, tensile strength, and percentage reduction of the material after rupture. Based on these data, the calculated values were obtained by breaking strain hardening coefficient and a titanium metal alloy. According to the results of tests of sam-ples cut from the composite shell of the tank load-displacement diagrams for two types of samples were obtained. Ac-cording to these data, the values were calculated by the modulus of elasticity for samples of composite material of two types. The obtained values of mechanical properties of the titanium alloy and composite based on the results of experi-mental studies were compared with the data of the relevant regulations. Based on this, refined are the grades of tita-nium alloy and a composite material, used in the manufacture of the metal-made high-pressure xenon tank.
Keywords: mechanical properties, mechanical and environmental tests, titanium alloy, composite material, break-ing strain.
References

References

 

1.   GOST 1497–84. Metally. Metody ispytaniy na rastyazhenie. [State Standart 1497-84. Metals. Methods of tensile tests]. Moscow, IPK Standartinform Publ., 1984, 28 p.

2.   Mahutov N. A. Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsiy na prochnost'. [Deformation and fracture criteria for the calculation of structural elements for strength]. Moscow, Mashinostroenie Publ., 1981, 272 p.

3.   Obrazcov I. F., Vasilyev V. V. Bunakov V. A.
Optimal’noe armirovanie obolochek vrashcheniya iz kompozitnykh materialov. [Optimal reinforcement shells of revolution from composite materials]. Moscow, Mashinostroenie Publ., 1977, 145 p.

4.   Komkov M. A. Tarasov V. A. Tekhnologiya namotki kompozitsionnykh konstruktsiy raket i sredstv porazheniya. [Technology winding composite structures missiles and weapons of destruction]. Moscow, MGTU Publ., 2011, 431 p.

5.   Spravochnik po kompozitsionnym materialam. Кn. 1. Pod red. D. Lyubina [Handbook of composite materials. Bk. 1. Ed. J. Lubin]. Moscow, Mashinostroenie Publ., 1988, 448 p.

6.   Soprotivlenie materialov. [Strength of materials]. Kiev, Vishcha shkola Publ., 1979, 696 p.

7.   Fudzii T., Zako M. Mekhanika razrusheniya kompozitsionnykh materialov: per. s yaponskogo. [Fracture mechanics of composite materials]. Moscow, Mir Publ., 1982, 232 p.

8.   Pfitzer E., Difendorf R., Kalnin I. et al. Uglerodnye volokna i uglekompozity [Carbon fibers and carbon-based composite]. Moscow, Mir Publ., 1988, 336 p.

9.   Chamis K. K. Proektirovanie elementov konstruktsiy iz kompozitnov. V kn.: Kompozitsionnyy materialy [Design of composite structural elements. In the book: Composite materials]. Ed. L. Brautmana and R. Kroka. T. 8, Ch. 2. Moscow, Mashinostroenie Publ., 1978, 214–252 p.

10.   Mijosi T., Siratori M. Analiz deformatsiy i povedeniya konstruktsiy pri razrushenii metodom konechnykh elementov. [Analysis of deformation and fracture behavior of structures using finite element method]. Moscow, Mir Publ., 1976, 206 p.

11.   Dzhone B. H. Veroyatnostnye metody i nadezhnost’ konstruktsiy. V kn.: Kompozitsionnye materialy. [Probabilistic methods and reliability of structures. In the book: Composite materials. Ed. L. Brautmana and R. Kroka. T. 8, Ch. 2. Moscow, Mashinostroenie Publ., 1978, 42–80 p.

12.   Halpin J. C., Kopf J. R., Goldberg W. J. Compostite Materials, 1970, 462 p.

13.   Mett'yuz F., Rolings R. Kompozitnye materialy. Mekhanika i tekhnologiya. [Composite materials. Mechanics and technology]. Moscow, Tehnosfera Publ., 2004, 408 p.

14.   Brautman L., Krok R., Noton B. Kompozitsionnyy materialy. T. 3: Primenenie kompozitsionnykh materialov v tekhnike. [Composite materials. Vol. 3: Application of composite materials in technics]. Moscow, Mashinostroenie Publ., 1978, 511 p.

15.   GOST 22178–76. Listy iz titana i titanovykh splavov. [State Standart 22178–76. Sheets made of titanium and titanium alloys]. Moscow, Standartinform Publ., 1976, 18 p.

16.  GOST 25.604–82. Metody mekhanicheskikh ispytaniy kompozitnykh materialov s polimernoy matritsey (kompozitov). Metod ispytaniya na izgib pri normal'noy, povyshennoy i ponizhennoy temperaturakh. [State Standart 25.604–82. Methods of mechanical testing of composite materials with the polymeric matrix (composites). Test method for bending with normal, high and low temperatures]. Moscow, IPK Standartinform Publ., 1983, 15 p.


Aniscovich Evgeniy Valerievich – Cand. Sc., scientist, Special Design and Technological Bureau “Nauka”, Krasnoyarsk Scientific Centre of Siberian Branch of Russian Academy of Sciences. Е-mail: plaza1@mail.ru.

Seredin Valentin Igorevich – postgraduate student, Special Design and Technological Bureau “Nauka”, Krasnoyarsk Scientific Centre of Siberian Branch of Russian Academy of Sciences. Е-mail: seredinv@sdtb.krasn.ru.