UDK 629.78.054:621.396.018 Doi: 10.31772/2712-8970-2021-22-3-425-431
Automated system for detecting anomalies of periodic electrical signals
Krasnenko S. S., Khaidukova V. N., Nedorezov D. A.
JSC Academician M. F. Reshetnev Information Satellite Systems; 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation; Siberian Federal University; 79, Svobodny Pr., Krasnoyarsk, 660041, Russian Federation
The aim of the work is to develop an automated system for detecting anomalies of periodic electrical signals with improved characteristics of the speed and efficiency of search. To solve this goal, the analysis of the problem of detecting anomalies of periodic electrical signals measured from electronic equipment was carried out and its relevance was substantiated. A hardware and software system for detecting anoma-lies of periodic electrical signals has been developed, which makes it possible to automate the testing proc-ess and increase the efficiency of detecting malfunctions of electronic equipment for various purposes. The improvement of the aforementioned characteristics was achieved due to a new test method underlying the implementation of the proposed system and protected by the patent of the Russian Federation for an inven-tion, as well as due to the high-quality implementation of software and hardware. When solving the set tasks, the methods of algebra-logic, mathematical statistics and object-oriented programming were used. The results of developing hardware, software and test algorithms are presented. A program for an electronic computer that implements control of the proposed hardware-software system is described.
Keywords: anomalies of periodic electrical signals, hardware and software complex, debug, testing, ar-tifacts, electronic equipment, automation.
References

1. Nguen Sh. Т., Uldashev Z. М., Sadukova Е. V. [Remote heart rate monitoring system for detecting episodes of atrial fibrillation]. Medicinskaia tehnika. 2017, No. 3(303), P. 28–31 (In Russ.).

2. Gant K., Bohorquez J., Thomas C. K. Long-term recording of electromyographic activity from multiple muscles to monitor physical activity of participants with or without a neurological disorder. Biomedizinische Technik. 2019, No. 64(1), P. 81–91.

3.Li F., Sun J., Xu T. et. al. Development of Custom Oscilloscope Based on CSNS Wall Current Monitor Data Acquisition. Yuanzineng Kexue Jishu. Atomic Energy Science and Technology. 2019, No. 53(9), P. 1715–1718.

4. Isaeva O., Nozhenkova L. Spacecraft onboard equipment testing automation technology on the basis of simulation model. IOP Conference Series: Materials Science and Engineering. 2019, No. 537(3), P. 032067.

5.Nepomnyashchiy О. V., Pravitel A. S., Mambetaliev N. A. et. al. [Solid-state memory modules for onboard equipment of small spacecraft]. Naykoemkie tehnologii. 2015, Vol. 16, No 3, P. 71–76 (In Russ.).

6.Tektronix [System Wave Inspector]. Available at: https://ru.tek.com/product-features/wave-inspector-navigation-and-automated-search (accessed: 17.05.2021).

7.Teledyne Lecroy [System Wave Scan]. Available at: https://teledynelecroy.com/doc/wavescan-in-wavesurfer-3000z-oscilloscopes (accessed 17.05.2021).

8.Teledyne Lecroy [Oscilloscopes & Protocol Analyzers]. Available at: http://cdn.teledynelecroy. com/files/ pdf/labmaster-10zi-a-datasheet.pdf (accessed: 17.05.2021).

9.Teledyne Lecroy [System Trigger Scan]. Available at: https://teledynelecroy.com/doc/ triggerscan-technical-brief (accessed 17.05.2021).

10.  Rohde & Schwarz [Oscilloscopes]. Available at: https://www.rohde-schwarz.com/ru/product/ rtc1000-productstartpage_63493-515585.html (accessed: 17.05.2021).

11.  Tektronix [Oscilloscopes]. Available at: https://www.tek.com/oscilloscope/tds2000-digital-storage-oscilloscope (accessed: 17.05.2021).

12.  Li Z., Hu X., Zhang G. Design and realization of HA hot-swap application for CPCI/PXI system. Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, ICIEA 2014 6931478, 2014, P. 1898–1902.

13.  Li D., Hu X. Hot-swap and redundancy technology for CPCI measurement and control systems. Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications, ICIEA 2016 7603795, 2016, P. 1355–1358.

14.  Pichkalev A. V. [The equipment of long-term run for onboard equipment knot debugging]. Materialy XVIII Mezhdunarodnoy nauchnoy konferentsii “Reshetnevskie chteniya. [Reshetnev Readings: Materials of the XVIII International Scientific Conference]. Krasnoyrsk, 2014. P. 240–241 (In Russ).

15.  Nedorezov D. А. Mnogokanalnii samopisec [Multichannel recorder]. Computer programs, No. 2017663519, 07.12.2017.

16.  Nedorezov D. А. Sposob intelektyalnogo analiza oscilogram [Waveform Intelligent Analysis Method]. Patent RF, No. 2017140553.


Krasnenko Sergey Sergeevich – second rank design engineer, JSC Academician M. F. Reshetnev Information Satellite Systems. Е-mail: t_150@list.ru.

Khaidukova Valeria Nikolaevna – Master student; Siberian Federal University. E-mail: Valeriya_iks@mail.ru.

Nedorezov Dmitrii Aleksandrovich – Master student; Siberian Federal University. E-mail: Nedorezovd@mail.ru.


  Automated system for detecting anomalies of periodic electrical signals