UDK 629.7.036.620 Doi: 10.31772/2712-8970-2021-22-2-339-354
Characteristics of low thrust liquid-propellant rocket engines testing process
Nazarov V. P., Piunov V. Yu., Yatsunenko V. G., Savchin D. A.
Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037, Russian Federation; Isaev Chemical engineering Design Bureau, 12, Bogomolova St., Koroljov, Moscow region, 141070, Russian Federation
Low thrust liquid-propellant rocket engines (LTLPRE) are the main type of rocket engines for control systems of space aircrafts. The thrusters are able to work either in continuous or impulse regime, which is one of their main characteristics. The suggestion about engines` reliability should come from the results of tests which create real or greatly approximated to the real conditions. The development process of thrusters takes into a great account the problems of bench testing methodic, technical equipment of test benches for creating the closest possible to space conditions and the use of diagnostic methods and instruments for various types of physical research and dimensions. The ground test effectiveness depends on the level of real conditions imitation and the level of attention to all operational factors that influence the credibility of reliability parameter estimation during the development. One of the most important questions in terms of testing effectiveness is the question of testing result accuracy and credibility. The testing process of thrusters mainly goes under the requested conditions of vacuum, created in pressure chambers. To increase the effectiveness of space conditions imitation the paper suggests using the pressure chamber, equipped with the tube shield with the circulating liquid nitrogen under required mass flow rate. The impulse working regime creates instability of propellant moving in pipelines. The paper considers the methods of providing dynamically similar characteristics of supply systems in propulsion systems as well as conformity of hydraulic, inert and wave characteristics of supply pipelines.
Keywords: liquid-propellant rocket engines of low thrust, bench tests, space condition imitation.
References

1. Grishin S. D., Zakharov Yu. A., Odelevskiy V. K. Proektirovanie kosmicheskikh apparatov s dvigatelyami maloy tyagi [Design of aircrafts with liquid propellant rocket engines of low thrust]. Moscow, Mashinostroenie Publ., 2003, 236 p.

2.Kraev M. V., Krushenko G. G., Kaychuk L. N., Yatsunenko V. G. Razrabotka osnovnykh sistem stenda ognevykh ispytaniy zhidkostnykh raketnykh dvigateley maloy tyagi [Design of main systems of thruster test facility]. Krasnoyarsk, IVM SO RAN Publ., 2008, 47 p.

3.Vorob’ev A. G., Vorob’ev S. S. [Methods of thruster chamber heat state calculation in a steady impulse regime]. Vestnik SibGAU. 2016,Vol. 17, No. 4, P. 945–955. (In Russ.)

4.Lebedinskiy E. V. Rabochie protsessy v zhidkostnom raketnom dvigatele i ikh modelirovanie pod red. A. S. Koroteeva[Working processes in liquid propellant rocket engines and their modelling edited by A. S. Koroteev]. Moscow, Mashinostroenie Publ., 2008, 512 p.

5.NIIMash [Research Institute of Mechanical Engineering]. (In Russ.) Available at: http://niimashspace.ru/index.php/produce/rkt/31-propulsion (accessed: 10.11.2020).

6.Novosti kosmonavtiki [Space news]. (In Russ.) Available at: http://novosti-kosmonavtiki.ru/ forum/forum9/topic11175/ (accessed: 12.08.2020).  

7.Produktsiya Turaevskogo MKB “Soyuz” [The products of the Turaev MKB Soyuz]. (In Russ.) Available at: http://www.tmkb-soyuz.ru/ (accessed: 15.09.2020).

8.Produktsiya FGUP KB KhM imeni A. M. Isaeva [Products of the Federal State Unitary Enterprise Isayev Design Bureau] (In Russ.). Available at: http://www.kbhmisaeva.ru/main.phpid=31 (accessed: 21.08.2020).

9.ShustovI. G. Dvigateli 1944–2000: aviatsionnye, raketnye, morskie, nazemnye [Engines 1944–2000: aircraft, rocket, naval, land-based engines]. Moscow, AKS-Konversalt Publ., 2000, 406 p.

10.Biryukov V. I., Nazarov V. P., Tsarapkin R. A. [Estimating algorithm of working process stability reserve in liquid-propellant rocket engines chambers]. Sibirskiy zhurnal nauki i tekhnologiy. 2017,Vol. 18, No. 3, P. 558–566. (In Russ.)

11.AMBR Engine for Science Missions [NASA in space propulsion technology (ISPT) program]. Available at: nts.nasa.giv/archive/nasa/ casi.nts.nasa…/20090001339.pdf (accessed: 05.09.2020).

12.Shibanov A. A., Pikalov V. P., Saydov S. S. Metody fizicheskogo modelirovaniya vysokochastotnoy neustoychivosti rabochego protsessa v zhidkostnykh raketnykh dvigatelyakh pod red. d-ra tekhn. nauk K. P. Denisova. [Methods of physical modelling of high-frequency instability in working processes of liquid-propellant rocket engines]. Moscow, Mashinostroenie Publ., Polet Publ, 2013, 512 p.

13.Kraev M. V., Yatsunenko V. G. [Measurements during firing tests of low thrust liquid propellant rocket engines]. Vestnik SibGAU. 2004, Vol. 5, P. 167–172. (In Russ.)

14.Yatsunenko V. G., Nazarov V. P., Kolomentsev A. I. Stendovye ispytaniya zhidkostnykh raketnykh dvigateley [Bench testing of liquid propellant rocket engines]. Krasnoyarsk, Siberian St. Aerospace Univ. Publ., Moscow Aviation Inst. Publ., 2016, 248 p.

15.Glikman B. F. Nestatsionarnye techeniya v pnevmogidravlicheskikh tsepyakh [Non-stationary flows in hydraulic and pneumatic circuits]. Moscow, Mashinostroenie Publ., 1979, 125 p.  

16.Biryukov V. I., Mosolov S. V. Dinamika gazovykh traktov zhidkostnykh raketnykh dvigateley [Dynamics of gas paths of liquid-propellant rocket engines]. Moscow, Moscow Aviation Inst. Publ., 2016, 168 p.

17.Lestrade J., Verberne O., KhimecheG. et. al. Experimental Demonstration of the Vacuum Specific Impulse of a Hybrid Rocket Engine. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, 2014.

18.Yatsunenko V. G. Optimizatsiya protsessa konstruktorskoy otrabotki ZhRD maloy tyagi pri ognevykh ispytaniyakh [Optimisation of the design process for liquid-propellant low thrust rocket engines firing tests]. Krasnoyarsk, Siberian St. Aerospace Univ., 2006, 124 p.

19.Panchurin K. A. [Solution of the Navier-Stokes equations for the particular case of non-stationary laminar flow in pipes]. Trudy Leningradskogo Instituta vodnogo transporta. 1963, Vol. 45, P. 49–51. (In Russ.)

20.Fayzulaev D. F., Navruzov K., Fattaev F. N. [Pulsating flow of a viscous incompressible fluid in a circular branch pipe] DAN Uzbek SSR. 1981, No. 10, P. 20–22. (In Russ.)

21.Popov D. N. [Features of non-stationary flows in pipes]. Izvestiya Vysshikh Uchebnykh Zavedenii, Mashinostroenie. 1970, No. 7, P. 78–82. (In Russ.)

22.Jeong Soo Kim, JeongPark, Sungcho Kim. Test and Performance Evaluation of Small Liquid-monopropellant Rocket Engines. 42ndJoint Propulsion Conference & Exhibit.Sacramento,2006.


Nazarov Vladimir Pavlovich – Cand. Sc., Professor, Head of the Department of Aircraft Engines; Reshetnev
Siberian State University of Science and Technology. E-mail:
nazarov@sibsau.ru.

Piunov Valery Yuryevich – Cand. Sc.; Deputy General Director; Isaev Chemical engineering Design Bureau.
E-mail: piunovdm@gmail.com.

Yatsunenko Vladimir Grigorievich – Cand. Sc., Professor of the Department of Aircraft Engines; Reshetnev
Siberian State University of Science and Technology. E-mail: vyatsunenko@mail.ru.

Savchin Dmitry Aleksandrovich – Post-graduate student; Reshetnev Siberian State University of Science and Technology. E-mail: savchin.dim@yandex.ru.


  Characteristics of low thrust liquid-propellant rocket engines testing process