UDK 531.133.3 Doi: 10.31772/2712-8970-2021-22-1-106-120
Methodology for calculating the de-weighting system of large-sized transformable elements of space vehicles for ground tests
Belyaev A. S., Filipas A. A., Tsavnin A. V., Tyryshkin A. V.
National Research Tomsk Polytechnic University; 30, Lenin Avenue, Tomsk, 634050, Russian Federation
This paper considers the methodology for calculating the de-weighting system of spacecraft elements for ground tests, taking into account the deployment options, de-weighting conditions, types and options of de-weighting systems. An example of calculation for a 3-section solar battery without a beam with incomplete de-weighting and with minimization of moments in the hinges is given. Genetic algorithms are used as an algorithm for determining the parameters of the de-weighting system, which allows obtaining the minimum moments in the hinges. The moments and forces acting in the system were checked by plotting diagrams in the expanded state. In addition, a check for compliance with the specified distance, based on design constraints, between the points of application of the weighting forces was made.
Keywords: de-weighting, spacecraft, testing in ground conditions, automatic control systems, parametric un-certainty.
References

1. Bilko V. V., Pletneva N. А., Pletnev V. V. Ispytatelniy stend dly raskrytiya solnechnih batarey [Test Bench for Solar Battery Deployment]. Patent 2 468 969 РФ, МПК7 B 64 G 7/00, 2012.

2. Bilko V. V., Pletneva N. А., Sorokoletov V. I., Schuplyk Y. P. Stend raskrytiya paneley solnechnoy batarei [Solar Panel Deployment Stand]. Patent 2 483 991 RUS, IPC 7 B 64 G 7/00,
B 64 G 1/44, 2013.

3. Zurfluh E. A. Controlled fiber-optic switch. Patent. 5 110 194 USA, IPC 7 B 64 G 7/00, G 01 M 19/00, 1990.

4. Zarnichin А. Y., Malyshenko А. М. [Investigation of the dynamic properties of the vertical channel of the active silo-compensating system]. Ingeneriya dly osvoeniya kosmosa. Tomsk, TPU, 2016, P. 268–269. (In Russ.)

5. Hasselman T. K. Microgravity suspension system for simulating a weightless environment. Patent 5 379 657 USA, IPC 7 B 66 F 11/00, G 01 M 19/00, 1992.

6. Zarnichin А. Y. [Investigation of the dynamics of tracking systems of a stand with
an active dewatering system for testing the deployment of solar cell wings in terrestrial conditions]. Molodezh i sovremennie informachionnie tehnologii. Tomsk, TPU, 2016, P. 268–269. (In Russ.)

7. Shpyakin I., Voronin A., Malyshenko A., Majkov  S. Modeling of a Solar Arrays Deployment Process at Ground Tests of Mechanical Devices on Active Gravity Compensation Systems. 2018 3rd Russian-Pacific Conference on Computer Technology and Applications (RPC). Vladivostok, 2018,
P. 1–4.

8. Verhoglyad A. G., Kuklin V. A., Makarov S. N., Mihalkin V. M., Halimanovich V. I. Automated weight compensation system for ground-based tryout of space vehicle solar panels. Siberian Journal of Science and Technology. 2017, Vol. 18, No 3, P. 567–574.

9. Vector Clinician's Guide. Available at: https://www.bionessvector.com/documents/Vector%20Clinician's%20Guide%20Rev.%20K%20[efile].pdf (accessed: 4.06.2020).

10. Plooij M., Keller U., Sterke B., Komi S., Vallery H., von J. Zitzewitz  Design of RYSEN: An Intrinsically Safe and Low-Power Three-Dimensional Overground Body Weight Support. IEEE
Robotics and Automation Letters. 2018, Vol. 3, No. 3, P. 2253–2260.

11. Karmanova A. V., Filipas A. A. [Study of the model of a three-point crane of flexible suspension]. Aktual'nye problemy innovacionnogo razvitiya yadernyh tekhnologiy. 2016, P. 68–68а.
(In Russ.)

12. Belyaev A. S., Filipas A. A., Malyshenko A. M., Sumenkov O. Yu. Modeling and control system development for mobile ro-bots for solar panels weightlessness imitation. News of the Tula state university. Technical sciences. 2020, No. 12, P. 3–12. (In Russ.)

13. Tsavnin A. V., Efimov S. V., Zamyatin S. V. External boundaries of pole localization region formulation for transfer function with interval-given parameters. Siberian Journal of Science and Technology. 2019, Vol. 20, No. 3, P. 327–332.

14. Tsavnin A. V., Efimov S. V., Zamyatin S. V. Providing real closed-loop transfer functions poles for plant with interval-given parameters for overshoot elimination. 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). Dublin, Ireland. 2019, P. 1–7.

15. Malishenko A. M. [A formalized method for describing the structures and parameters of kinematic chains of manipulators]. Izvestiya Akademii nayk SSSR, Mashinovedenie. 1989, No. 4, P. 61–67. (In Russ.)

16. Malishenko A. M. [Derivation of kinematics equations for a crank-slide mechanism based on
a structural-parametric description of its kinematic chain]. Sovremennye tekhnologii, ekonomika i obrazova-nie: sbornik trudov Vserossiyskoy nauchno-metodicheskoj konferencii. Tomsk, TPU. 2019,
P. 57–60. (In Russ.)


Belyaev Aleksandr Sergeevich – PhD student; National Research Tomsk Polytechnic University. E-mail: asb22@tpu.ru.

Filipas Aleksandr Aleksandrovich PhD, Associate Professor; National Research Tomsk Polytechnic University. E-mail: filipas@tpu.ru.

Tsavnin Alexey VladimirovichAssistant professor; National Research Tomsk Polytechnic University. E-mail: avc14@tpu.ru.
Tyryshkin Aleksandr Vasilevich – PhD, Associate Professor; National Research Tomsk Polytechnic University.
E-mail: tyryshkin@tpu.ru.


  Methodology for calculating the de-weighting system of large-sized transformable elements of space vehicles for ground tests