UDK 537.312:538.911'956 Doi: 10.31772/2587-6066-2020-21-4-556-564
STUDY OF STRUCTURAL PROPERTIES OF BISMUTH PYROSTANNATE BY RAMAN AND IR SPECTROSCOPY
L. V. Udod, O. B. Romanova, S. S. Aplesnin, V. V. Kretinin
Reshetnev Siberian State University of Science and Technology; 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037, Russian Federation; Kirensky Institute of Physics, FRC KSC Siberian Branch of the Russian Academy of Sciences; 50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Chromium-substituted bismuth pyrostannates with a pyrochlore structure were synthesized by the solid-phase reaction method. The X-ray structural analysis performed at room temperature showed that the samples Bi2(Sn1-xCrx)2O7, x = 0; 0.05, 0.1 are single-phase and belong to the Pc monoclinic structure. Polymorphic transformations of the synthesized samples were studied by Raman and IR spectroscopy. IR spectra were obtained at the temperature range 110–525 K and frequencies 350–1100 cm–1. Raman spectra were measured at room temperature at frequencies of 100–3000 cm–1. Heterovalent substitution of Sn4+ for Cr3+ modifies the spectra of pure Bi2Sn2O7. The crystal structure of Bi2Sn2O7 consists of two oxygen sublattices: SnO6 and Bi2O'. Chromium ions substituted tin ions in the SnO6 oxygen octahedra, distorting the local structure in the vicinity of bismuth ions. Phonon modes are softening in the vicinity of phase transitions. А shift of the phase boundaries of polymorphic transitions is observed for Bi2(Sn1-хCrх)2O7, x = 0.05, 0.1. The frequencies of stretching vibration modes were determined from IR and Raman spectra. The substitution of chromium for tin ions resulted in the appearance of two new modes at frequencies of 581 and 822 cm–1 in the Raman spectra. The absence of an inversion center in the crystal structure of Bi2(Sn1-xCrx)2O7 is confirmed by Raman spectroscopy. IR spectra of chromium-substituted samples consist of complex lines, which decompose into 2 and 3 Lorentzian lines. The softening and broadening of optical absorption modes are associated with the electronic contribution. Impurity states of electrons form polarons.
Keywords: bismuth pyrostannate, crystal structure, phase transitions, IR spectroscopy, Raman spectroscopy, X-ray structural analysis.
References

1. Udod L. V., Aplesnin S. S., Sitnikov M. N., Molokeev
M. S. Dielectric and Electrical Properties of Polymorphic
Bismuth Pyrostannate Bi2Sn2O7. Physics of the
Solid State. 2014, Vol. 56, P. 1315–1319.
2. Udod L. V., Aplesnin S. S., Sitnikov M. N., Romanova
O. B., Molokeev M. N. Phase transitions in bismuth
pyrostannate upon substitution of tin by iron ions.
J. Alloys and Compounds. 2019, Vol. 804, P. 281–287.
3. Lewis J. W., Payne J. L., Evans I. R., Stokes H. T.,
Branton J. Campbell and John S. O. Evans. An Exhaustive
Symmetry Approach to Structure Determination:
Phase Transitions in Bi2Sn2O7. J. Am. Chem. Soc. 2016,
Vol. 138, P. 8031−8042.
4. Udod L. V., Sitnikov M. N., Aplesnin S. S., Molokeev
M. S. Electrical and Dielectrical Propeties of Gas-
Sensor Resistive Type Bi2Sn2O7. Solid State Phenomena.
2014, Vol. 215, P. 503–506.
5. Aplesnin S. S., Udod L. V., Sitnikov M. N. Electronic
transition, ferroelectric and thermoelectric properties
of bismuth pyrostannate Bi2(Sn0.85Cr0.15)2O7. Ceramics
International. 2018, Vol. 44, P. 1614–1620.
6. Aplesnin S. S., Udod L. V., Sitnikov M. N.,
Kretinin V. V., Molokeev M. S., Mironova-Ulmane N.
Dipole glass in chromium-substituted bismuth pyrostannate.
Mater. Res. Express. 2018, Vol. 5, P. 115202.
7. Aplesnin S. S., Udod L. V., Sitnikov M. N., Molokeev,
M. S., Tarasova L. S., Yanushkevich K. I. Magnetic,
Dielectric, and Transport Properties of Bismuth
Pyrostannate Bi2(Sn0.9Mn0.1)2O7. Physics of the Solid
State. 2017, Vol. 59, P. 2268–2273.
8. Aplesnin S. S,, Udod L. V., Loginov Y. Y.,
Kretinin V. V., Masyugin A. N. Influence of cation substitution
on dielectric and electric properties of bismuth
stannates Bi2Sn1.9Me0.1O7 (Me=Cr, Mn). IOP Conf.
Series: Materials Science and Engineering. 2019,
Vol. 467, P. 012014.
9. Udod L. V., Aplesnin S. S., Sitnikov M. N. Magnetic
Properties of Bismuth Pyrostannate Doped with 3D
Ions. Inorganic Materials: Applied Research. 2020,
Vol. 11, P. 809–814.
10. Udod L. V., Aplesnin S. S., Sitnikov M. N.,
Eremin E. V., Molokeev M. S. Effect of Mn Doping on
Magnetic and Dielectric Properties of Bi2Sn2O7. Sol.
St. Phenomena. 2015, Vol. 233–234, P. 105.
11. Aplesnin S. S., Udod L. V., Sitnikov M. N.,
Eremin E. V., Molokeev M. S., Tarasova L. S., Yanushkevich
K. I., Galyas A. I., Correlation of the Magnetic and
Transport Properties with Polymorphic Transitions in
Bismuth Pyrostannate Bi2(Sn1–xCrx)2O7. Phys. Sol. St.
2015, Vol. 57, P. 1627–1632.
12. Aplesnin S. S., Udod L. V., Sitnikov M. N.,
Shestakov N. P. Bi2(Sn0.95Cr0.05)2O7: Structure, IR spectra,
and dielectric properties. Ceramics International. 2016,
Vol. 42, P. 5177–5183.
13. Aplesnin S. S., Udod L. V., Sitnikov M. N., Romanova
O. B. Dielectric and transport properties, electric
polarization at the sequential structural phase transitions
in iron-substituted bismuth pyrostannate. Ceramics
International. 2020. Available at: https://doi.org/10.1016
/j.ceramint.2020.08.287 (accessed 25.10.2020).
14. Udod L. V., Aplesnin S. S., Sitnikov M. N., Romanova
O. B., Bayukov O. A., Vorotinov A. M., Velikanov
D. A., Patrin G. S. Magnetodielectric effect and spin
state of iron ions in substituted bismuth pyrostannate.
European Physical Journal Plus. 2020. DOI:
10.1140/epjp/s13360-020-00781-2.
15. Evans I. R., Howard J. A. K., Evans J. S. O.
α-Bi2Sn2O7 – a 176 atom crystal structure from powder
diffraction data. J. Mater. Chem. 2003, Vol. 13,
P. 2098–2103.
16. Shannon R. D. Revised effective ionic radii
and systematic studies of interatomic distances in halides
and chalcogenides. Acta Cryst. A. 1976, Vol. 32 (5),
P. 751–767.
17. Chen M., Tanner D. B., Nino J.C. Infrared study
of the phonon modes in bismuth pyrochlores. Phys. Rev.
B. 2005, Vol. 72, P. 054303-8.
18. Moens L., Ruiz P., Delmon B., Devillers M. Cooperation
effects towards partial oxidation of isobutene in
multiphasic catalysts based on bismuth pyrostannate.
Appl. Catal. A: Gen. 1998, Vol, 171, P. 131.
19. Silva R. X., Paschoal C. W. A., Almeida R. M.,
M. Carvalho Castro Jr., Ayalac A. P., Auletta J. T.,
Lufaso M. W. Temperature-dependent Raman spectra
of Bi2Sn2O7 ceramics. Vibrational Spectroscopy. 2013,
Vol. 64, P. 172–177.


Udod Lubov Viktorovna – Cand. Sc., Associate Professor; Reshetnev Siberian State University of Science
and Technology; Kirensky Institute of Physics, FRC KSC Siberian Branch of the Russian Academy of Sciences.
Е-mail: luba@iph.krasn.ru.
Romanova Oksana Borisovna – Cand. Sc., Researcher; Kirensky Institute of Physics, FRC KSC Siberian Branch
of the Russian Academy of Sciences. E-mail: rob@iph.krasn.ru.
Aplesnin Sergey Stepanovich – Dr. Sc., Professor, Head of the Department of Physics; Reshetnev Siberian
State University of Science and Technology; Kirensky Institute of Physics, FRC KSC Siberian Branch of the Russian
Academy of Sciences. E-mail: aplesnin@sibsau.ru,
Kretinin Vasily Vasilievich – student of the Department of Physics; Reshetnev Siberian State University of Science
and Technology. E-mail: kretinin.vasya@yandex.ru.


  STUDY OF STRUCTURAL PROPERTIES OF BISMUTH PYROSTANNATE BY RAMAN AND IR SPECTROSCOPY