UDK 621.792 Doi: 10.31772/2587-6066-2020-21-4-535-547
IMPACT OF THE REINFORCEMENT TECHNIQUE ON CHARACTERISTICS OF COMPOSITE TUBULAR STRUCTURES
E. A. Trifonova, A. V. Zhukov, V. V. Savitsky, V. V. Batrakov
JSC Academician M. F. Reshetnev “Information satellite systems”; 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation; Kazan National Research Technical University named after A. N. Tupolev; 10, K. Marks St., Kazan, Republic of Tatarstan, 420111, Russian Federation
Different composite elements including tubular structures are used as support structures in spacecraft optical systems. The compliance with the specified dimensional stability over a wide temperature range, in particular from –269 up to 100 °C, is important for the design of tubular structures. The promising method of manufacturing tubular structures of CM – radial braiding combined with RTM molding method is discussed in this paper. In addition, the paper describes the method of determining the optimal reinforcement technique for a braided perform which allows to reduce geometrical deflections occurring during a molding process. The impact of the reinforcement technique on the dimensional stability of tubular structures is illustrated in this paper by the example of several reinforcement techniques and manufacturing methods. The paper also contains the analysis of these techniques and the determination of the optimal one to comply with the specified characteristics.
Keywords: dimensional stability, composite materials, reinforcement technique, preform.
References

1. Kardashev N. S., Novikov I. D., Lukash V. N.
[Overview of scientific task for the Millimertron
observatory]. Uspekhi fizicheskikh nauk. 2014, No. 12,
P. 1319–1352 (In Russ.).
2. Federal'noe kosmicheskoe agentstvo [Space observatory
Millimertron] (In Russ.). Available at:
http://millimetron.ru/index.php/ru/ (accessed 16.03.2020).
3. Mikhaylin Yu. A. Spetsial'nye polimernye kompozitsionnye
materialy [Special polymer materials].
St.Petersburg, Nauch. osnovy i tekhnologii Publ., 2009,
658 p.
4. Kirillov V. N., Startsev O. V., Efimov V. A. [Climatic
resistance and damageability of polymer composite
materials, problems and solutions]. Aviatsionnye materialy
i tekhnologii. 2012, No. S, P. 412–423 (In Russ.).
5. Mikhaylin Yu. A. Konstruktsionnye polimernye
kompozitsionnye materialy [Structural polymer composite
materials]. St.Petersburg, Nauch. osnovy i tekhnologii
Publ., 2008, 820 p.
6. Maksimov G. Yu. Teoreticheskie osnovy razrabotki
kosmicheskikh apparatov [Theoretical foundations of
spacecraft development]. Moscow, Nauka Publ., 1980,
320 p.
7. Smerdov A. A., Tairova L. P., Timofeev A. N.
[Method of design and experimental development of dimensionally
stable tubular rods made of carbon fiber].
Konstruktsii iz kompozitsionnykh materialov. 2006, No. 3,
P. 12–23 (In Russ.).
8. Mikhaylov V. V. K voprosu o mekhanike razrusheniya
pri rastyazhenii elementov iz vysokoprochnykh armirovannykh
plastikov s poverkhnostnymi i skvoznymi
treshchinami [On the issue of tensile fracture mechanics
of high-strength reinforced plastic elements with surface
and through cracks]. Moscow, Nauka Publ., 1981,
P. 278–281.
9. Samipur S. A., Khaliulin V. I., Batrakov V. V. [Development
of a technology for the manufacture of composite
tubular elements for aerospace purposes by the
method of radial braiding]. Problemy mashinostroeniya i
nadezhnosti mashin. 2018, No. 3, P. 90–95 (In Russ.).
10. Meleshko A. I., Polovnikov S. P. Uglerod,
uglerodnye volokna, uglerodnye kompozity [Carbon, carbon
fibers, carbon composites]. Moscow, Sayns Press
Publ., 2007, 189 p.
11. Tkachuk A. I., Grebeneva T. A., Chursova L. V.,
Panina N. N. [Thermoplastic binder. Present and future].
Trudy VIAM. 2013, No. 11. (In Russ.). Available at:
http//www.viam-works.ru (accessed 13.03.2020).
12. Kozhanov D. A. [Modelling tensile behavior of
flexible woven composites]. Nizhniy Novgorod, NIIM
NU, 2017, 117 p.
13. Endruweit A., Ermanni P. The in-plane permeability
of sheared textiles. Experimental observations
αz = –0,8·10–6 1/°C
and a predictive conversion model. Composites.
Part A. 2004, No. 35 P. 439–451. Doi:
10.1016/j.compositesa.2003.11.002.
14. Vernet N., Ruiz E., Advani S. Experimental determination
of the permeability of engineering textiles.
Composites. Part A. 2014, No. 61 P. 172–184. Doi:
10.1016/j.compositesa.2014.02.0101359-835X/.
15. Robert S. Pierce, Brian G. Falzon, Mark C.
Thompson Permeability Characterization of Sheared Carbon
Fiber Textile Preform POLYMER COMPOSITES,
2018, P. 2287–2298.


Trifonova Ekaterina Aleksandrovna – design engineer; JSC Academician M. F. Reshetnev “Information satellite
systems”. E-mail: trifonova@iss-reshetnev.ru.
Zhukov Andrey Viktorovich – deputy chief; JSC Academician M. F. Reshetnev “Information satellite systems”.
E-mail: zhav@iss-reshetnev.ru.
Savitsky Vyacheslav Vasil'evich – department head; JSC Academician M. F. Reshetnev “Information satellite
systems”. E-mail: savs@iss-reshetnev.ru.
Batrakov Vladimir Vladimirovich – Head of Composite Technology Laboratory; Kazan National Research
Technical University named after A. N. Tupolev E-mail: wwba@list.ru.


  IMPACT OF THE REINFORCEMENT TECHNIQUE ON CHARACTERISTICS OF COMPOSITE TUBULAR STRUCTURES