UDK 539.3 Doi: 10.31772/2587-6066-2020-21-4-499-513
COMPOUND BENDING OF AN ORTHOTROPIC PLATE
R. A. Sabirov
Reshetnev Siberian State University of Science and Technology; 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037, Russian Federation
The problem of longitudinal-transverse deformation and strength of an orthotropic plate on the action of a local transverse force and stretching along the contour of the membrane forces is studied. The direction of laying the fiber of a unidirectional composite that provides the lowest level of stress and deflection is determined. In the zone of application of concentrated force in thin-walled structures, significant bending moments and shear forces occur, which are a source of stress concentration. To reduce stresses, the method of plate tension by membrane forces applied along the contour is chosen. The maximum possible order of membrane tension forces is selected, which provides conditions for the strength and rigidity of the solar panel plate structure, which has a hinge-fixed support along the contour. Pre-tensioning the plate web allows to reduce the stress by 50 times. The problem of compound bending of isotropic and anisotropic plates when applying transverse and selection of longitudinal loads, with restrictions on strength and stiffness, can be called a problem of rational design of the structure. The resulting equations and calculation program can be used in the design of plate structures, as well as in the educational process.
Keywords: plate bending, longitudinal-transverse deformation.
References

1. Morozov E. V., Lopatin A. V. Analysis and design
of the flexible composite membrane stretched on the
spacecraft solar array frame. Composite Structures. 2012,
No. 94, P. 3106–3114.
2. Lopatin A. V., SHumkova L. V., Gantovnik V. B.
Nelineynaya deformaciya ortotropnoj membrany, rastyanutoj
na zhestkoj rame solnechnogo elementa. V: Protokol
49 konferencii AIAA / ASME / ASCE / AHS / ASC,
strukturnoj dinamiki i materialov, 16 konferencii AIAA /
ASME / AHS po adaptivnym strukturam. 10t, Schaumburg,
IL: AIAA-2008-2302 [Nonlinear deformation of an
orthotropic membrane stretched on a rigid frame of a solar
cell. In: Minutes of the 49th AIAA / ASME / ASCE /
AHS / ASC Conference, Structural Dynamics and Materials,
16th AIAA / ASME / AHS Conference on Adaptive
Structures. 10t, schaumburg, il: aiaa-2008-2302]. april
7–10, 2008.
3. Vasil'ev V. V., Protasov V. D., Bolotin V. V. et al.
Kompozicionnye materialy: Spravochnik [Composite materials:
handbook]. Moscow, Mashinostroenie Publ.,
1990, 512 p.
4. Papkovich P. F. Stroitel'naya mekhanika korablya.
CHast' II. Slozhnyy izgib, ustojchivost' sterzhney i ustojchivost'
plastin [Construction mechanics of the ship. Part
II. Complex bending, stability of rods and stability
of plates]. Leningrad, Sudpromgiz Publ., 1941, 960 p.
5. Papkovich P. F. Stroitel'naya mekhanika korablya
[Construction mechanics of the ship]. Vol. 1. Iss. 1.
Moscow, Morskoy transport Publ., 1945, 618 p.
6. Lukasevich S. Lokal'nye nagruzki v plastinah i
obolochkah [Local loads in plates and shells]. Moscow,
Mir Publ., 1982, 544 p.
7. Novozhilov V. V. Osnovy nelinejnoj teorii
uprugosti [Fundamentals of the nonlinear theory of elas
ticity]. Leningrad – Moscow, OGIZ-Gostekhizdat Publ.,
1948, 212 p.
8. Timoshenko S. P. Ustoychivost' uprugih system
[Stability of elastic systems]. Leningrad – Moscow,
OGIZ-Gostekhizdat Publ., 1946, 532 p.
9. Timoshenko S. P., Yung D. Inzhenernaya mekhanika
[Engineering mechanics]. Moscow, Mashgiz
Publ., 1960, 508 p.
10. Lyav A. Matematicheskaya teoriya uprugosti
[Mathematical theory of elasticity]. Moscow, ONTI Publ.,
1935.
11. Vol'mir A. S. Gibkie plastinki i obolochki [Flexible
plates and shells]. Moscow, Gostekhizdat Publ., 1956,
419 p.
12. Il'yushin A. A., Lenskiy V. S. Soprotivlenie materialov
[Resistance of materials]. Moscow, Fizmatgiz
Publ., 1959, 372 p.
13. Kauderer G. Nelineynaya mekhanika [Nonlinear
mechanics]. Moscow, Izd-vo inostrannoy literatury Publ.,
1961, 778 p.
14. Lejbenzon L. S. Kurs teorii uprugosti [Course of
the theory of elasticity]. Leningrad – Moscow, OGIZ
Publ., 1947, 465 p.
15. Lukash P. A. Osnovy nelineynoy stroitel'noy mekhaniki
[Fundamentals of nonlinear construction mechanics].
Moscow, Stroyizdat Publ., 1978, 204 p.
16. Novackij V. Teoriya uprugosti [Theory of elasticity].
Moscow, Mir Publ., 1975, 872 p.
17. Lekhnickiy S. G. Teoriya uprugosti anizotropnogo
tela [Theory of elasticity of an anisotropic body]. Moscow,
Nauka Publ., 1977, 416 p.
18. Samarskij A. A. Teoriya raznostnyh skhem [Theory
of difference schemes]. Moscow, Nauka Publ., 1977,
656 p.
19. Govoruhin V., Cybulin V. Komp'yuter v matematicheskom
issledovanii. Uchebnyy kurs [Computer in
mathematical research: training course]. St. Petersburg,
Piter Publ., 2001, 624 p.


Sabirov Rashid Altavovich  – Ph. D., Associate Professor; Reshetnev Siberian State University of Science and
Technology. E-mail: rashidsab@mail.ru.


  COMPOUND BENDING OF AN ORTHOTROPIC PLATE