UDK 539.3 Doi: 10.31772/2587-6066-2020-21-4-483-491
METHOD OF EQUIVALENT STRENGTH CONDITIONS IN CALCULATIONS OF BODIES WITH INHOMOGENEOS REGULAR STRUCTURE
А. D. Matveev
Institute of Computational Modeling; 50/44, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Plates, beams and shells with a non-uniform and micro-uniform regular structure are widely used in aviation and rocket and space technology. In calculating the strength of elastic composite structures using the finite element method (FEM) it is important to know the error of the approximate solution for finding where you need to build a sequence of approximate solutions that is connected with the procedure of crushing discrete models. Implementation of the procedure for grinding (within the micro-pass) discrete models of composite structures (bodies) requires large computer resources, especially for discrete models with a microinhomogeneous structure. In this paper, we propose a method of equivalent strength conditions (MESC) for calculating elastic bodies static strength with inhomogeneous and microinhomogeneous regular structures, which is implemented via FEM using multigrid finite elements. The calculation of composite bodies’ strength according to MESC is limited to the calculation of elastic isotropic homogeneous bodies strength using equivalent strength conditions, which are determined based on the strength conditions set for composite bodies. The MESC is based on the following statement. For all composite bodies V0 , which are such a homogeneous isotropic body V b and the number of p , if the safety factor nb of the body Vb satisfies the equivalent conditions of strength 2 pn1(1  )  nb (1  )  pn2 (1  ) , the safety factor n0 of the body V0 meets the defined criteria for strength n1  n0  n2 , where n1 , n2 specified, the safety factor n0 ( nb ) complies with the accurate (approximate) solution of elasticity theory problem is built for body V0 (body Vb );   (n2  n1) / (n2  n1) ;  is the upper b error estimation of the maximum equivalent body stress V b , corresponding to approximate solution. When constructing equivalent strength conditions, i. e when finding the equivalence p coefficient, a system of discrete models is used, dimensions of which are smaller than the dimensions of the basic composite bodies models. The implementation of MESC requires small computer resources and does not use procedures for grinding composite discrete models. Strength calculations for bodies with a microinhomogeneous structure using MESC show its high efficiency. The main procedures for implementing the MESC are briefly described.
Keywords: elasticity, composites, equivalent strength conditions, multigrid finite elements, plates, beams, shells.
References

1. Pisarenko G. S., Yakovlev A. P., Matveev V. V.
Spravochnik po soprotivleniyu materialov [Handbook of
resistance materials']. Kiev, Nauk. Dumka Publ., 1975,
704 p.
2. Birger I. A., Shorr B. F., Iosilevich G. B. Raschet
na prochnost' detalej mashin [Calculation of the strength
of machine parts]. Moscow, Mashinostroenie Publ., 1993,
640 p.
3. Moskvichev V. V. Osnovy konstrukcionnoj
prochnosti tekhnicheskih sistem i inzhenernyh sooruzhenij
[Fundamentals of structural strength of technical
systems and engineering structures]. Novosibirsk,
Nauka Publ., 2002, 106 p.
4. Matveev A. D. [Calculation of elastic structures using
the adjusted terms of strength]. Izvestiya AltGU. 2017,
No. 4, P. 116–119 (In Russ.). Doi:
10.14258/izvasu(2017)4-21.
5. Norri D., de Friz Zh. Vvedenie v metod konechnykh
elementov [Introduction to the finite element
method]. Moscow, Mir Publ., 1981, 304 p.
6. Zenkevich O. Metod konechnykh elementov v
tekhnike [Finite element method in engineering]. Moscow,
Mir Publ., 1975, 544 p.
7. Fudzii T., Dzako M. Mekhanika razrusheniya
kompozicionnyh materialov [Fracture mechanics of composite
materials]. Moscow, Mir Publ., 1982.
8. Matveev A. D. [The method of multigrid finite elements
in the calculations of three-dimensional homogeneous
and composite bodies]. Uchen. zap. Kazan.
un-ta. Seriia: Fiz.-matem. Nauki. 2016, Vol. 158, No. 4,
P. 530–543 (In Russ.).
9. Matveev A. D. [Multigrid method for finite elements
in the analysis of composite plates and beams].
Vestnik KrasGAU. 2016, No. 12, P. 93–100 (In Russ.).
10. Matveev A. D. Multigrid finite element method in
stress of three-dimensional elastic bodies of heterogeneous
structure. IOP Conf, Ser.: Mater. Sci. Eng. 2016, Vol.
158, No. 1, Art. 012067, P. 1–9.
11. Matveev A. D. [Multigrid finite element Method
in the calculations of composite plates and beams of
irregular shape]. The Bulletin of KrasGAU. 2017, No. 11,
P. 131–140 (In Russ.).
12. Matveev A. D. [Multigrid finite element Method].
The Bulletin of KrasGAU. 2018, No. 2, P. 90–103
(In Russ.).
13. Matveev A. D. [The method of. multigrid finite
elements of the composite rotational and bi-curved shell
calculations]. The Bulletin of KrasGAU. 2018. No. 3,
P. 126–137 (In Russ.).
14. Matveev A. D. [Method of. multigrid finite elements
to solve physical boundary value problems]. Ministry
of information technologies and mathematical modeling.
Krasnoyarsk, 2017, P. 27–60.
15. Matveev A. D. [Some approaches of designing
elastic multigrid finite elements]. VINITI Proceedings.
2000, No. 2990-B00, P. 30 (In Russ.).
16. Matveev A. D. [Multigrid modeling of composites
of irregular structure with a small filling ratio]. J. Appl.
Mech. Tech. Phys. 2004, No. 3, P. 161–171 (In Russ.).
17. Matveev A. D., Grishanov A. N. [Single- and
double-grid curvilinear elements of three-dimensional
cylindrical panels and shells]. Izvestiya AltGU. 2014,
No. 1/1. P. 84–89 (In Russ.).
18. Matveev A. D., Grishanov A. N. [Multigrid
curvilinear elements in three-dimensional analysis of
cylindrical composite panels with cavities and holes].
Proceedings of Kazan University. 2014, Vol. 156, No. 4,
P. 47–59 (In Russ.).
19. Matveev A. D., Grishanov A. N. [Threedimensional
Composite Multigrid Finite Shell-Type
Elements]. Izvestiya AltGU. 2017, No. 4/1, P. 120–125
(In Russ.).
20. Matveev A. D. [The construction of complex multigrid
finite element heterogeneous and microinhomogeneities
in structure]. Izvestiya AltGU. 2014,
No. 1/1, P. 80–83(In Russ.). Doi:
10.14258/izvasu(2014)1.1-18.
21. Matveev A. D. [Method of generating finite
elements]. The Bulletin of KrasGAU. 2018, No. 6,
P. 141–154 (In Russ.).
22. Matveev A. D. [Construction of multigrid finite
elements to calculate shells, plates and beams based on
generating finite elements]. PNRPU Mechanics Bulletin.
2019, No. 3, P. 48–57 (In Russ.). Doi:
10/15593/perm.mech/2019.3.05.
23. Matveev A. D. [Calculation of the strength of
composite structures using equivalent strength conditions].
The Bulletin of KrasGAU. 2014, No. 11, P. 68–79
(In Russ.).
24. Matveev A. D. [The method of equivalent strength
conditions in calculating composite structures regular
structure using multigrid finite elements]. Siberian Journal
of Science and Technology. 2019, Vol. 20, No. 4,
P. 423–435 (In Russ.). Doi: 10.31772/2587-6066-2019-
20-4-423-435.
25. Samul' V. I. Osnovy teorii uprugosti i plastichnosti
[Fundamentals of the theory of elasticity and plasticity].
Moscow, Vysshaia shkola Publ., 1982, 264 p.
26. Golushko S. K., Nemirovskii Iu. V. Priamye i
obratnye zadachi mekhaniki uprugikh kompozitnykh
plastin i obolochek vrashcheniia [Direct and inverse problems
of mechanics of elastic composite plates and shells
of rotation]. Moscow, FIZMATLIT Publ., 2008, 432 p.


Matveev Alexander Danilovich – Cand. Sc., associate Professor, senior researcher; Institute of computational
modeling SB RAS. E-mail: mtv241@mail.ru.


  METHOD OF EQUIVALENT STRENGTH CONDITIONS IN CALCULATIONS OF BODIES WITH INHOMOGENEOS REGULAR STRUCTURE