UDK 539.21:537.86 Doi: 10.31772/2587-6066-2020-21-3-451-458
INFLUENCE OF THE MAGNETIC FIELD ON TRANSPORT PROPERTIES OF HOLMIUM – MANGANESE SULFIDE
M. N. Sitnikov, A. M. Kharkov, S. S. Aplesnin, O. B. Romanova
Reshetnev Siberian State University of Science and Technology; 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037, Russian Federation; Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch Russian Academy of Sciences; 660036, Krasnoyarsk, Akademgorodok 50, bld. 38
Holmium-manganese sulfide with giant magnetoresistance refers to new magnetic sulfide compounds of holmium and manganese that have the effect of giant magnetoresistance (i. e., with special magnetoelectric properties), which can be used as components of sensor technology, magnetic memory, and spintronics. The technology of manufacturing polycrystals HoXMn1-XS grown by crystallization from the melt of the obtained powdered sulfides with a purity not lower than 99,9 %, in glass-carbon crucibles and a quartz reactor in an argon atmosphere is presented. According to the results of x-ray diffraction analysis, HoXMn1-XS holmium-manganese sulfides have a HCC structure of the NaCl type. As the degree of cationic substitution increases, the unit cell parameter increases linearly with the concentration. No concomitant impurity phases are detected in the synthesized samples. To determine the state of the spin glass, magnetic moment measurements are conducted at several frequencies ω = 1 kHz, 10 kHz and 100 kHz. The dependence of magnetic characteristics on the frequency of measurements is found. The damping of the magnetic moment and its increase with a decrease in temperature is reviled, which is connected with the formation of metastable States. Measurements of electrical resistance without a field and in a magnetic field are conducted. Anomalies in the temperature dependence of the conductivity are found. A change in the magnetoresistance sign is detected with the increase of temperature below and above room temperature.
Keywords: solid solutions, resistance, magnetic permeability, the effect of giant magnetoresistance.
References

1. Fert A. Nobel Lecture: Origin, development, and
future of spintronics. Rev. Mod. Phys. 2008, Vol. 80,
P. 1517.
2. Barthelemy, A. Handbook of Magnetic Materials /
A. Barthelemy, A. Fert, F. Petroff; ed. by K.H.J.
Buschow. Amsterdam: North Holland. 1999, Vol. 12,
P. 1–96.
3. Volkov N. V. [Spintronics: magnetic tunnel structures
based on manganites]. UFN. 2012, Vol. 182, P. 263
(In Russ.).
4. Romanova O. B., Aplesnin S. S., Udod L. V.,
Sitnikov M. N., Kretinin V. V., Yanushkevich K. I.,
Velikanov D. A. Magnetoresistance, magnetoimpedance,
magnetothermopower, and photoconductivity in silverdoped
manganese sulfides. J. Appl. Phys. 2019, Vol. 125,
P. 175706.
5. Aplesnin S. S., Sitnikov M. N., Kharkov A. M.,
Masyugin A. N., Kretinin V. V., Fisenko O. B., Gorev M. V.
Influence of induced electrical polarization on the magnetoresistance
and magnetoimpedance in the spindisordered
TmxMn1-xS solid solution. Phys. Stat. Sol. B.
2019, P. 1900043.
6. Bebenin N. G., Zainullina R. I., Ustinov V. V.
[Manganites with colossal magnetoresistance]. UFN.
2018, Vol. 188, P. 801–820 (In Russ.).
7. Aplesnin S. S., Sitnikov M. N. [Magnetotransport
effects in the ferromagnetic state in GdxMn1-xS]. ZhETF.
2014, Vol. 100, P. 104–110 (In Russ.).
8. Nagaev E. L. [Lanthanum manganites and other
magnetic semiconductors with giant magnetoresistance].
UFN. 1996, Vol. 166, No. 8, P. 796–857 (In Russ.).
9. Kagan M. U., Kugel K. I. [Inhomogeneous charge
states and phase separation in manganites]. UFN. 2001,
Vol. 171, P. 577–596 (In Russ.).
10. Abramova G. M., Petrakovsky G. A., Vtyurin A. N.,
Vorotynov A. M., Velikanov D. A., Krylov A. S., Gerasimova
Yu., Sokolov V. V., Bovina A. F. Magnetic properties,
magnetoresistance, and Raman spectra CuVXCr1-XS2.
FTT. 2009, Vol. 51, Vol. 3, P. 500–504.
11. Aplesnin S. S., Petrakovskii G. A., Ryabinkina L. I.,
Abramova G. M., Kiselev N. I., Romanova O. B. Influence
of magnetic ordering on the resistivity anisotropy of
α-MnS single crystal. Solid State Communications. 2004,
Vol. 129, Iss. 3, P. 195–197.
12. Aplesnin S. S., Ryabinkina L. I., Romanova O. B.,
Sokolov V. V., Pichugin A. Y., Galyas A. I., Demidenko
O. F., Makovetski G. I., Yanushkevich K. I.
Magnetic and electrical properties of cation-substituted
sulfides MeXMn1-XS (Me = Co, Gd). Physics of the Solid
State. 2009, Vol. 51, Iss. 4, P. 698–701.
13. Aplesnin S. S., Ryabinkina L. I., Abramova G. M.,
Romanova O. B., Vorotynov A. M., Velikanov D. A.,
Kiselev N. I., Balaev A. D. Conductivity, weak ferromagnetism,
and charge instability in an α-MnS single crystal.
Phys. Rev. B. 2005, Vol. 71, No. 1, P. 125204–125212.
14. Aplesnin S. S., Ryabinkina L. I., Romanova O. B.
et al. [Magnetoresistance properties of solid solutions
MnSe1-xTex]. FTT. 2007, Vol. 49, P. 1984 (In Russ.).
15. Petrakovskii G. A., Loseva G. V., Ryabinkina L. I.,
Aplesnin S. S. Metal insulator transition and magnetic
properties in disordered systems of solid solutions
MexMn1-xS. JMMM. 1995, Vol. 140, P. 147–148.
16. Aplesnin S. S., Kharkov A. M., Sokolov V. V.
Gigantic magnetocapacitive effect into YbxMn1-xS. Abstract
for Euro-Asian Symposium “Trends in magnetism”,
EASTMAG, Vladivostok. 2013, P. 33–34.
17. Aplesnin S. S., Moskvin A. I. [The influence of
strong electron correlations and interactions of electrons
with the lattice on the electron orbital ordering]. ZhETF.
2010, Vol. 92, No. 4, P. 254–259 (In Russ.).
18. Aplesnin S. S., Kharkov A. M., Sitnikov M. N.,
Sokolov V. V. Spin reduction in the HoXMn1-XS solid
solution. JMMM. 2013, Vol. 347, P. 10–13.
19. Aplesnin S. S. [Role of fluctuation relations for the
transport properties in manganites and nichelato]. ZhETF.
2007, Vol. 131, No. 5, P. 878–884 (In Russ.).
20. Aplesnin S. S., Ryabinkina L. I., Romanova O. B.,
Bandurina O. N., Gorev M. V., Balaev A. D., Eremin E. V.
[Spin-glass effects in solid solutions CoXMn1-XS].
Izvestiya RAN. Seriya fizicheskaya. 2009, Vol. 73,
P. 1021–1023 (In Russ.).
21. Aplesnin S. S., Ryabinkina L. I., Romanova O. B.,
Sokolov V. V., Pichugin A. Yu., Galyas A. I., Demidenko
O. F., Makovetskii G. I., Yanushkevich K. I. [Magnetic
and electric properties of the cation-substituted sulfides
MexMn1-xS (Me = Co, Gd)]. FTT. 2009, Vol. 51,
P. 661–664 (In Russ.).
22. Aplesnin S. S. Magnitnye i elektricheskie svoystva
sil'nokorrelirovannykh magnitnykh poluprovodnikov s
chetyrekhspinovym vzaimodeystviem i s orbital'nym uporyadocheniem.
[Magnetic and electrical properties of
strongly correlated magnetic semiconductors with fourspin
interaction and orbital ordering]. Moscow, Fizmatlit
Publ., 2013, 172 p.
23. Aplesnin S. S. Influence of spin-phonon coupling
on the magnetic moments in 2D spin-1/2 antiferromagnet.
Phys. Lett. A. 2003, Vol. 313, P. 122–125.
24. Petrakovskii G. A., Ryabinkina L. I., Velikanov D. A.,
Aplesnin S. S., Abramova G. M., Kiselev N. I., Bobina A.
F. Low-temperature electronic and magnetic transitions in
the antiferromagnetic semiconductor Cr0.5n0.5S. Phys. Sol.
Stat. 1999, Vol. 41, Iss. 9, P. 1520–1524.
25. Aplesnin S. S., Kharkov A. M., Eremin E. V.,
Romanova O. B., Balaev D. A., Sokolov V. V., Pichugin
A. Yu. Nonuniform Magnetic States and Electrical Properties
of Solid Solutions. IEEE Transactions on magnetics.
2011, Vol. 47, P. 4413–4416.
26. Aplesnin S. S., Romanova O. B., Kharkov A. M.,
Balaev D. A., Gorev M. V., Vorotinov A. M., Sokolov V. V.,
Pichugin A. Yu. Metal-semiconductor transition in
SmxMn1-xS solid solutions. J. Phys. Status Solidi (b).
2012, Vol. 249, P. 812.
27. Aplesnin S. S., Romanova O. B., Kharkov A. M.,
Galyas A. I. [Study the transport properties of cationsubstituted
solid solutions YbXMn1-XS]. FTT. 2015,
Vol. 57, P. 872–876 (In Russ.).
28. Aplesnin S. S., Udod L. V., Sitnikov M. N.,
Velikanov D. A., Gorev M. V, Molokeev M. S., Galyas A. I.,
Yanushkevich K. I. Magnetic and electrical properties of
bismuth cobaltite Bi24(CoBi)O40 with charge ordering.
Phys. Sol. Stat. 2012, Vol. 54, Iss. 10, P. 2005–2014.
29. Aplesnin S. S., Moskvin A. I. Magnetic structures
upon ordering of eg orbitals in a square lattice. J. Phys.:
Condens. Matt. 2008, Vol. 20, P. 325202–325203.
30. Werner P., Gull E., Troyer M., Millis A. J. Spin
Freezing Transition and Non-Fermi-Liquid Self-Energy
in a Three-Orbital Model. Phys. Rev. Lett. 2008, Vol. 101,
P. 166405.
31. Kugel К. I., Rakhmanov A. L., Sboychakov A. O.,
Khomskii D. I. Doped orbitally ordered systems: Possible
mechanism for phase separation. Phys. Rev. B. 2008,
Vol. 78, P. 155113.
32. Aplesnin S. S., Romanova O. B., Yanushkevich K. I.
Magnetoresistance effect in anion-substituted manganese
chalcogenides. Phys. Stat. Sol. B. Basic Research. 2015,
Vol. 252, Iss. 8, P. 1792–1798.
33. Peters R., Kawakami N. Orbital order, metalinsulator
transition, and magnetoresistance effect in the
two-orbital Hubbard model. Phys. Rev. В. 2011, Vol. 83,
P. 125110.


Sitnikov Maxim Nikolaevich – Cand. Sc., associate Professor of the Department of physics; Reshetnev Siberian
State University of Science and Technology. E-mail: kineru@mail.ru
Kharkov Anton Mikhailovich – Cand. Sc., associate Professor of the Department; Reshetnev Siberian State
University of Science and Technology. E-mail: khark.anton@mail.ru.
Aplesnin Sergey Stepanovich – Dr. Sc., Professor of the Department; Reshetnev Siberian State University
of Science and Technology. E-mail: aplesnin@sibsau.ru , apl@iph.krasn.ru
Romanova Oksana Borisovna – Cand. Sc., Senior researcher; Kirensky Institute of Physics, Federal Research
Center KSC Siberian Branch Russian Academy of Sciences. E-mail: rob@iph.krasn.ru.


  INFLUENCE OF THE MAGNETIC FIELD ON TRANSPORT PROPERTIES OF HOLMIUM – MANGANESE SULFIDE