UDK 629.09:62-253:629-78:621 Doi: 10.31772/2587-6066-2020-21-3-389-399
STUDY OF IMPELLER DESIGN PARAMETERS EFFECT ON THE AXIAL THRUST OF A CENTRIFUGAL ELECTRIC PUMP ASSEMBLY
Z. A. Kuznetsova, M. I. Sinichenko, A. D. Kuznetsov, I. A. Kleshnina, F. K. Sin'kovskiy
JSC Academician M. F. Reshetnev Information Satellite Systems; 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation
This paper discusses and estimates the effect of some design parameters on the value of axial thrust appearing during functioning of the core component of a spacecraft’s (SC) thermal control subsystem – electric pump unit (EPU). The major causes of axial forces in centrifugal pumps of in-line arrangement are described and analysed. Design parameters having an effect of axial thrust value are: impeller position relatively to EPU diffuser (position was chosen based on dimension chain calculation), presence and size of discharging holes in the impeller, number and shape of impeller vanes (numbers of 14 & 16 were considered). EPU impellers with different number and shape of vanes were designed and manufactured. A series of experiments was carried out in order to research the effects of all aforementioned parameters: measurements of head vs flow curves and axial thrust values at given flow values. Each parameter’s contribution in the value of axial thrust appearing during EPU functioning is evaluated. Vibration measurements were obtained and analysed for electric motor DBE 63-25-6.3 fitted with different impellers. In this study, a DLP additive process was used for impellers manufacturing, which significantly sped up the tests. Obtained results will extend knowledge of processes taking place in EPU impellers, enable choice of the aforementioned parameters at design phase so to minimise axial thrust appearing during functioning of a centrifugal EPU of a spacecraft’s thermal control subsystem. Outcomes of this study are capable of improving SC reliability at all phases of its life because EPU axial thrust causes its premature loss of operability.
Keywords: centrifugal pump, pump impeller, axial thrust, spacecraft thermal control subsystem.
References

1. Ley W., Wittman K., Hallmann W. Handbook of
Space Technology, 2009, 884 p.
3. Sarafin T. P, Larson W. J. Spacecraft structures and
mechanisms. From Concept to Launch, 2007, 850 p.
4. Lomakin A. A. Tsentrobezhnye i osevye nasosy
[Centrifugal and axial pumps]. Moscow, Mashinostroenie
Publ., 1996, 364 p.
4. Zimnitskiy V. A. et al. Lopastnye nasosy [Vane
pumps]. Leningrad, Mashinostroenie Publ., 1986, 334 p.
5. Perevoshchikov S. I. Konstruktsiya tsentrobezhnykh
nasosov (obshchie svedeniya) [The design of centrifugal
pumps (general information)]. Tyumen, Tsogu Publ.,
2013, 228 p.
6. Malyushenko V. V., Mikhaylov A. K. Energeticheskie
nasosy [Energy pumps]. Moscow, Energoizdat
Publ., 1981, 200 p.
7. Yarementko O. V. Ispytaniya nasosov [Pump Testing].
Moscow, Mashinostroenie Publ., 1976, 225 p.
8. Mikhaylov A. K., Malyushenko V. V. Lopastnye
nasosy. Teoriya, raschet i konstruirovanie. [Vane pumps.
Theory, calculation and construction]. Moscow, Mashinostroenie
Publ., 1977, 288 p.
9. Kraev M. V., Lukin V. A., Ovsyannikov B. V.
Maloraskhodnye nasosy aviatsionnykh i kosmicheskikh
sistem [Low-flow pumps of aviation and space systems].
Moscow, Mashinostroenie Publ., 1985, 128 p.
10. Zlenko M. A., Nagaytsev M. V., Dovbysh V. M.
Additivnye tekhnologii v mashinostroenii. Posobie dlya
inzhenerov [Additive technologies in mechanical engineering.
A manual for engineers]. Moscow, NAMI Publ.,
2015, 220 p.
11. Baybakov O. V. Primenenie EVM v raschetakh
protochnoy polosti lopastnykh gidromashin [The use of
computers in the calculations of the flowing cavity
of paddle hydraulic machines]. Moscow, MGTU im.
N. E. Baumana Publ., 1982, 65 p.
12. Branshteyn L. Ya. Spravochnik konstruktora
gidroturbin [Hydroturbine Designer Reference]. Moscow,
Mashinostroenie Publ., 1971, 304 p.
13. Sazonov Yu. A., Mulenko V. V., Balaka A. Yu.
[Computer modeling and development of a methodology
for designing dynamic pumps and machines]. Territoriya
neftegaz. 2011, No. 10, P. 34–36 (In Russ.).
14. Karelin V. Ya. Kavitatsionnye yavleniya v tsentrobezhnykh
i osevykh nasosakh [Cavitation phenomena
in centrifugal and axial pumps]. Moscow, Mashinostroenie
Publ., 1976, 325 p.
15. Loytsyanskiy L. G. Mekhanika zhidkosti i gaza
[Mechanics of fluid and gas]. Moscow, Drofa Publ., 2003,
840 p.


Kuznetsova Zoya Alekseevna – category 3 design engineer; JSC Academician M. F. Reshetnev Information
Satellite Systems. E-mail: u-z-a@yandex.ru.
Sinichenko Mikhail Ivanovich – head of department; JSC Academician M. F. Reshetnev Information Satellite
Systems. E-mail: smi320@iss-reshetnev.ru.
Kuznetsov Artem Dmitrievich – category 2 design engineer; JSC Academician M. F. Reshetnev Information
Satellite Systems. E-mail: tember63@mail.ru.
Kleshnina Irina Aleksandrovna – category 3 design engineer, JSC Academician M. F. Reshetnev Information
Satellite Systems. E-mail: kleshninaia@iss-reshetnev.ru.
Sin'kovskiy Fedor Konstantinovich – Deputy director of the Industrial Center for Large-Sized Foldable Mechanical
Structures; JSC Academician M. F. Reshetnev Information Satellite Systems. E-mail:
sfk@iss-reshetnev.ru.


  STUDY OF IMPELLER DESIGN PARAMETERS EFFECT ON THE AXIAL THRUST OF A CENTRIFUGAL ELECTRIC PUMP ASSEMBLY