UDK 691.175 Doi: 10.31772/2587-6066-2020-21-2-155-162
VOLUME TEMPERATURE CONTROL AT AUTOMATED HIGH-FREQUENCY PROCESSING OF POLYMER AND COMPOSITE MATERIALS
V. S. Bychkovsky, D. V. Butorin, D. V. Bakanin, N. G. Filippenko, A. V. Livshits
Irkutsk State Transport University; 15, Chernyshevsky Av., Irkutsk, 664074, Russian Federation
The purpose of this work is to develop and justify a method for volumetric temperature control of a polymer and composite material in automated high-frequency processing. The developed method is implemented by in-troducing thermocouples into the prism-shaped or cube-shaped sample body according to a certain pattern of their location throughout the volume. This technique is cost-effective and easy to implement compared to expen-sive and specialized equipment with complex design, as well as to the cost of thermocouples having a simple de-sign. Methods to achieve the purpose of the research of the contact method of volumetric temperature of a polymer or composite sample control are development and outlining thermocouples throughout the volume so as to iden-tify the most accurate temperature spectrum of the polymer or composite sample during automated high-frequency processing. Another method to achieve this purpose is the method of finding out how it will affect the measurements accuracy of the heating sample temperature from the introduction of thermocouples by making holes in it for installation. For this, a finite-difference mathematical calculation of the dependence of the sample temperature on the number of holes for thermocouples in it was performed in the MSC Patran Sinda software package. The calculation results were summarized and presented on graphic data. Further, a general mathemat-ical calculation was performed according to the formulas for the process of heat and mass conductivity calcula-tion, the results of which were table and graphic data. At the end of the finite-difference and general mathematical calculation, a comparative analysis of the ob-tained error of temperature measurement from the introduction of thermocouples into the body of the sample was performed. Based on this analysis, the developed method is applicable for further research on automated high-frequency processing of polymer and composite materials, since the errors obtained do not exceed the permissi-ble 3 %.
Keywords: polymers, high-frequency heating, finite-element mathematical model, general mathematical mod-el.
References

1.  Bychkovsiy V. S., Filippenko N. G., Popov S. I., Popov A. S. [Thermal vacuum deposition of a self-lubricating coating of polymeric materials of friction units of machines and mechanisms of transport engineering]. Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie. 2018, Vol. 58, No. 2, P. 58–64 (In Russ.).

2.  Ustanovka dlya svarki plastmass., Pasport UZP 2500A, 412. 921.055. [Installation for welding plastics. Passport UZP 2500A, 412.921.055]. 1987, 60 p.

3.  Butorin D. V., Bakanin D. V., Bychkovskiy V. S., Filippenko N. G., Kuraytis A. S. Development and automation of the device for determination of thermophysical properties of polymers and composites. Advances
in Intelligent Systems and Computing. 2020, Vol. 982,
P. 731–740.

4.  Chernyshov V. N., Chernyshova T. I. Mikrovolnovyye metody i sistemy kontrolya teplofizicheskikh kharakteristik materialov i izdeliy. Monografiya [Microwave methods and systems for monitoring the thermophysical characteristics of materials and products. Monograph]. Tambov, TGTU Publ., 2015, 124 p.

5.  Kudryashov Yu. B., Perov Yu. F., Rubin A. B. Radiatsionnaya biofizika radiochastotnyye i mikrovolnovyye elektromagnitnyye izlucheniya [Radiation biophysics, radio-frequency and microwave electromagnetic radiation. Textbook for higher education]. Moscow, Fizmatlit Publ., 2008, 184 p.

6.  Livshits A. V. [Process control of high-frequency electrothermal polymers]. Problemy mashinostroeniya
i avtomatizatsii. Moscow, 2015, No. 3, P. 120–126 (In Russ.).

7.  Larchenko A. G., Livshits A. V., Filippenko N. G., Popov S. I. Ustroystvo diagnostiki detaley iz poliamidnykh materialov [Diagnostic device for parts made of polyamide materials]. Patent RF, no. 2013115531/28, 2013.

8.  Surzhikov A. P., Pritulov A. M., Gyngazov S. A., Lysenko E. N., Shabardin R. S. Sposob izmereniya maksimal'noy temperatury ob"yekta pri nagrevanii yego oblucheniyem elektronnym puchkom [The method of measuring the maximum temperature of an object when it is heated by irradiation with an electron beam]. Patent RF, no. 2168156, 1999.

9.  Kalinchev E. L., Sokovtseva M. B. Vybor plastmass dlya izgotovleniya i ekspluatatsii izdeliy. Spravochnoye izdaniye [The choice of plastics for the manufacture and operation of products. Reference edition]. Leningrad, Khimiya Publ., 1987, 416 p.

10. GOST 10589–87 Polyamide 610 injection molding. Technical conditions Technology Information Center Russian State Library. Available at: http // www.rsl.ru (accessed 08.04.2020).

11. Bychkovsky V. S., Filippenko N. G., Bakanin D. V., Kuraitis A. S. [Investigation of the temperature change of a polymer sample during high-frequency heating depending on changes in body volume and the effect of convection]. Molodaya nauka Sibiri. 2018, Vol. 1,
No. 1, P. 56–63 (In Russ.).

12. Palymsky I. B. Chislennoye modelirovaniye slozhnykh rezhimov konvektsii Releya-Benara. Mekhanika zhidkosti, gaza i plazmy. Dokt. Diss. [Numerical modeling of complex Rayleigh-Benard convection modes. Mechanics of fluid, gas and plasma. Doct. Diss.]. Novosibirsk, 2011, 206 p.

13. Butorin D. V., Filippenko N. G., Filatova S. N., Livshits A. V., Kargapoltsev S. K. [Development of a method for determining structural transformations in polymeric materials]. Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie. 2015, Vol. 48, No. 4, P. 80–86
(In Russ.).

14. Shastin V. I., Kargapoltcev S. K., Gozbenko V. E., Livshits A. V., Filippenko N. G. Results of the complex studies of microstructural, physical and mechanical properties of engineering materials using innovative methods. International Journal of Applied Engineering Research. 2017, Vol. 12, No. 24, P. 15269–15272.

15. Zaydel' A. N. Pogreshnosti izmereniy fizicheskikh velichin. Uchebnik [Errors of measurements of physical quantities. Textbook]. Leningrad, Nauka Publ., 1985,
112 p.

16. Gebkhart B., Dzhaluriya I., Makhadzhan R., Sammakiya B. Svobodnokonvektivnyye techeniya, teplo- i massoobmen [Free convective flows, heat and mass
transfer]. Moscow, Mir Publ., 1991, 678 p.

17. Bryukhanov O. N., Shevchenko S. N. Teplomassoobmen. [Heat and mass transfer].  Moscow, INFRA-M Publ., 2013, 446 p.

18. Tsvetkov F. F. Teplomassoobmen [Heat and mass transfer]. Moscow, MEI Publ., 2011, 562 p.

19. Alexandrov A. A., Livshits A. V., Filippenko N. G., Popov S. I., Filatova S. N Ustroystvo dlya opredeleniya koeffitsiyentov teplootdachi [Device for determining heat transfer coefficients].. Patent RF, no. 2014154288/28, 2014.


Bychkovsky Vladimir Sergeevich Ph. D. student, Irkutsk State Transport University. E-mail:
bikovskii_vs@mail.ru.
Butorin Denis Vitalievich – Ph. D., Irkutsk State Transport University. E-mail: denis.den_butorin@mail.ru.
Bakanin Denis Viktorovich – Ph. D. student, Irkutsk State Transport University. E-mail: denis.bakan@mail.ru.
Filippenko Nikolay Grigoryevich – Ph. D, Irkutsk State Transport University. E-mail: denis. pentagon@mail.ru.
Livshits Alexander Valerievich – Doctor of Technical Sciences, Professor, Irkutsk State Transport University.
E-mail: livnet@list.ru.
  


  VOLUME TEMPERATURE CONTROL AT AUTOMATED HIGH-FREQUENCY PROCESSING OF POLYMER AND COMPOSITE MATERIALS