UDK 629 Doi: 10.31772/2587-6066-2020-21-1-125-135
PECULIAR PROPERTIES OF TECHNOLOGICAL IMPROVEMENT AND OPTIMIZATION OF PRODUCTION COSTS OF 3D-CONFIGURATION PIPES
Titenkov S. V., Zhuravlev V. Yu.
JSC “Krasnoyarsk machine-building plant”, 29, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660123, Russian Federation. Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation. E-mail: VZ@sibsau.ru
The analyzes of the requirements to 3D-configuration pipelines production at the rocket and space industry enterprises is done. A review of different approaches to pipe bending technology (with heat treatment and without heat treatment) is carried out. The object of the study is the bending process and a universal bending machine for pipelines’ production of complex configuration. The article is divided into four sections, which consider the key factors, causing directly the effectiveness of the technological operation of pipeline bending of a complex 3D-trajectory. An overview of no-temperature shaping of the pipeline is given in the first section. The requirements to the technology, excluding: corrugation, flattening, stretching and thinning of pipeline walls during their bending, are considered. The actual regulatory documents and industry aerospace standards, regulating production of pneumatic and hydraulic pipelines are given. An example of calculating the minimal allowable bend radius of the pipe, depending on the diameter and thickness of the pipe wall, is given. The requirements to unification of the pipe size production and gaps are listed. The dependence of the maximal allowable internal pressure in the pipeline is shown. The requirements to equipment, used in pipeline bending and to the design of the pipe bending machine are considered. In the second section, the possibilities of temperature influence on the pipe bending process are viewed. The analysis of patent and technical literature and six possible methods of effective thermal effects are presented: heating of the whole pipeline length, narrow zone heating of the bend pipe place, water cooling with nitrogen in the pipe, laser-cooling of atoms of the pipes, application of the petroleum products on the place of heating of the pipe and using of modern fillers inside the pipe to change its temperature. In the third section the tasks of the development of a universal bending machine are set; the system of the algorithm of the universal bending machine operation is considered; the system of algorithm of the bending machine operating with CNC is shown. The General functional scheme of the bending machine and the sequence diagram of the equipment operation is given.
Keywords: pipe bending, requirements to 3D-configuration pipe bending, universal bending machine, technology of pipe bending, influence of temperature on the process of pipe bending.
References

1. Glazkov A. S., Klimov V. P., Gumerov K. M. [Longitudinal-transverse bending of the pipeline in areas
of soil changes].
Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2012. No. 1. P. 63–70 (In Russ.).
2. Glazkov A. V. [Technology of cold bending of pipes by longitudinal rolling. Scientific and technical
statements of SPbSPU].
Nauka i obrazovanie. 2012, no. 2-2, P. 132–136 (In Russ.).
3. Gumerov A. G., Dudnikov Yu. V., Azmetov H. A. [Analysis of the stress-strain state of underground pipelines at turning angles in the horizontal plane].
Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2012, No. 1, P. 46–50 (In Russ.).
4. Sunagatov M. F., Gaysin A. Z. [Determination of the stress-strain state of the pipeline in the zone of landslide of soil].
Neftegazovoe delo. 2016, No. 2, P. 134–150 (In Russ.).
5. Haliulin E. V. [Measurement of curvatures and deformations of thin-walled pipes made of corrosionresistant steels during their cold bending with rolling]. 
Aktual'nye voprosy tekhnicheskikh nauk : V Mezhdunar.
nauch. konf.
[Actual issues of technical sciences:
V Intern. scientific conf.] St. Petersburg, Svoe izdatel'stvo
Publ., 2019, P. 40–44 (In Russ.).
6. Ryzhkov E. V., Ryzhkov V. M. [On the effect of internal pressure on the bending of pipelines].
Vestnik
Volgogr. gos. arkhit.-stroit. un-ta. Ser.: Str-vo i arkhit. 
2012, Iss. 29 (48), P. 179–185 (In Russ.).
7.
OST 92-1600–84. Proizvodstvo truboprovodov. Obshie tehticheskie uslovia. Etalonirovanie truboprovodnih
system, gibka trub I formoobrazovanie koncov truboprovodov
[State Standard 92-1600–1984. Production of pipelines. Standardization of pipeline systems, pipe bending and shaping of pipeline ends]. Moscow, Standartinform Publ., 1984. 47 p.
8.
OST 92-1601–84. Proizvodstvo truboprovodov. Obshie tehticheskie uslovia. Sborka, okraska, markirovka,
ochistka, kontrol i montaj truboprovodov
[State Standard 92-1601–84. Pipeline manufacturing. General technical
conditions. Assembly, painting, marking, cleaning, monitoring and installation of pipelines]. Moscow, Standartinform Publ., 1984. 33 p.
9.
OST 92-1602–84. Proizvodstvo truboprovodov. Svarka. Obshie tehticheskie trebovaniya [State
Standard 92-1602–84. Pipeline manufacturing. Welding. General technical requirements]. Moscow, Standartinform
Publ., 1984. 32 p
10.
OST 92-1603–84. Proizvodstvo truboprovodov. Payka. Obshie tehticheskie trebovaniya [State Standard
92-1603–84. Pipeline manufacturing. Soldering. General technical requirements]. Moscow, Standartinform Publ.,
1984. 29 p
11.
OST 92-1604–84. Proizvodstvo truboprovodov. Ispitaniya. Obshie tehticheskie trebovaniya [State Standard 92-1603–84. Pipeline manufacturing. Tests. General technical requirements]. Moscow, Standartinform Publ., 1984. 60 p
12.
GOST 17365–71. Truboprovodi dlya agresivnih sred [State Standard 17365–71. Obshie tehticheskie trebovaniya]. Moscow, Standartinform Publ., 1971. 11 p
13.
ISO 6983–2009. Avtomatizirovannie sistemi i integraciya. Chislovoe programnoe upravlenie stankom.
Format programmi i opredelenie adresnih slov
[State Standard 6983–2009. Automated systems and integration.
Numerical control of the machine. The format of the program and the definition of address words]. Moscow,
Standartinform Publ., 2009. 26 p.
14. Shinkin V. N. [Mathematical modeling of production processes of large diameter pipes for trunk pipelines].
Vestnik SGTU. 2011, No. 4 (62), Iss. 4, P. 89–74 (In Russ.).
15. Shotsky S. A., Malyushin N. A. [Stresses and displacements of a loaded underground pipeline at turning
angles in a vertical plane].
Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Neft' i gaz. 2009, No. 2, P. 83–85 (In Russ.).
16. Chudakov G. M., Ivanov M. G., Barambonne S., Degtyarenko N. A. [Improving the reliability of the linear
part of main oil pipelines].
Nauchnye trudy KubGTU. 2016, No. 10, P. 70–85 (In Russ.).
17. About some tools and features of Lotsia PDM PLUS. Available at: https://sapr.ru/article/ 25364 (accessed: 29.12.2019).
18. Creating opportunities for computer modeling of physical processes and engineering analysis. Available
at: http://www.cadcamcae.lv/hot/CAE-WP_Part1_n53_n44.pdf (accessed: 29.12.2019).
19. Titenkov S. V., Zaporozhsky A. S., Nikishev A. A.
3D modelirovanie pri proektirovanii prostranstvennih truboprovodnih sistem [3D-simulation at designing space pipeline systems]. Reshetnevsky readings. Materials of the XVII Intern. scientific. conf.]. Krasnoyarsk,
2013. Part 1.
  


Titenkov Georgi Valerievich – leading design engineer; Krasnoyarsk machine-building plant.
E-mail: Titenkov-sv@mail.ru.
Zhuravlev Victor Yurevich – Cand. Sc., docent, professor; Reshetnev Siberian State University of Science
and Technology. E-mail: vz@sibsau.ru.
  


  PECULIAR PROPERTIES OF TECHNOLOGICAL IMPROVEMENT AND OPTIMIZATION OF PRODUCTION COSTS OF 3D-CONFIGURATION PIPES