UDK UDC 669/713-048/25 Doi: 10.31772/2587-6066-2019-20-1-88-98
DEVELOPMENT OF COMBINED ELECTRON-ION-PLASMA METHOD FOR FORMATION OF MULTIPHASE SUBMICRO-NANOSCALE ALLOYS BASED ON ALUMINUM. P. 88–98.
Ivanov Yu. F., Eresko S. P., Ahmadeev Yu. H., Lopatin I. V., Klopotov А. А.
Institute of High Current Electronics of the SB RAS, 2/3, Akademicheskiy Av., Tomsk, 634055, Russian Federation; Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation; Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 6340032, Tomsk, Russian Federation; National Research Tomsk State University, 36, Lenin Av., Tomsk, 634050, Russian Federation. Е-mail: klopotovaa@tsuab.ru.
Aluminum-based alloys are widely used in many branches of modern industry (aviation, mechanical engineering, shipbuilding, instrument-making, energy and medicine, etc.). The promising method for further expanding the scope of these alloys is surface treatment based on the use of concentrated energy fluxes (laser beams, plasma flows, powerful ion beams, continuous and pulsed electron beams). The purpose of this paper is to establish the possibilities of integrated electron-ion-plasma modification of the structure and properties of the surface layer of technically pure aluminum A7. The surface alloy was formed in a single vacuum cycle using the “KOMPLEX” facility (ISE SB RAS) by spraying a titanium film with a thickness of 0.5 μm and the subsequent irradiation with an intense pulsed electron beam in the aluminum melting mode. After 20 “spraying/irradiation” cycles, nitriding (540 °C, 8 h) of the formed surface alloy was performed in a low-pressure gas discharge plasma using the plasma generator “PINK”. Surface alloy studies were carried out applying the modern materials science methods (scanning and transmission electron diffraction microscopy, X-ray phase analysis, determination of hardness and wear resistance). The choice of elements alloying the surface layer of aluminum was based on the analysis of binary state diagrams of Al-N, Al-Ti, Ti-N systems and the isotermal section of the ternary system Al-Ti-N. It has been shown that formation of an entire series of binary and ternary compounds, including MAX-phases of the composition Ti2AlN and Ti4AlN3, is observed under equilibrium conditions in the Al-Ti-N system. The carried out research has allowed to state that an integrated method of electron-ion-plasma modification of technically pure A7 aluminum by nitriding (540 °C, 8 h) of the surface alloy formed by pulsed melting in vacuum of the Al-Ti system (20 “spraying/irradiation” cycles with an electron beam with parameters 10 J/cm2; 50 μs; 10 pulses; the titanium film thickness in each cycle 0.5 μm) leads to formation of a multiphase multielement submicro-nanocrystalline surface layer up to 20 μm thick. It is shown that the mechanical (microhardness) and tribological (wear resistance and friction coefficient) properties of the formed surface layer exceed manifold the properties of the original commercially pure aluminum A7.
Keywords: aluminum, electron-ion-plasma processing, nitriding, structural researches, nanostructure, properties.
References

1. Belov A. F., Benediktova G. P., Viskov A. S. Stroyeniye i svoystva aviatsionnykh materialov [Structure and properties of aviation materials]. Moscow, Metallurgiya Publ., 1989, 368 p.

2. Rakhmankulov M. M. Metallurgiya strategicheskikh metallov i splavov [Metallurgy of strategic metals and alloys]. Moscow, Teplotekhnik Publ., 2008, 504 p.

3. Kalachev B. A., Elagin V. I., Livanov V. A. Metallovedeniye i termicheskaya obrabotka tsvetnykh metallov i splavov [Metallurgy and heat treatment of nonferrous metals and alloys]. Moscow, MISiS Publ., 2005, 432 p.

4. Beletskiy V. M., Krivov G. A. Alyuminiyevyye splavy. Sostav. Svoystva, tekhnologiya, primeneniye [Aluminum alloy. Composition, properties, technology, application]. Kiyev, KOMINTEKh Publ., 2005, 365 p.

5. Koval N. N., Ivanov Yu. F. Elektronno-ionnoplazmennaya modifikatsiya poverkhnosti tsvetnykh metallov i splavov [Electron-ion-plasma modification of the surface of non-ferrous metals and alloys].Tomsk, NTL Publ., 2016, 312 р.

6. Kovaly N. N., Ivanov Yu. F. Evolyutsiya struktury poverkhnostnogo sloya stali. podvergnutoy elektronnoionno-plazmennym metodam obrabotki [Evolution of the structure of the surface layer of steel subjected to electron-ion-plasma treatment]. Tomsk, NTL Publ., 2016, 304 p.

7. Gribkov F. I. Grigoryev. B. A. Kalin V. A. Perspektivnyye radiatsionno-puchkovyye tekhnologii obrabotki materialov [Advanced radiation-beam technologies of materials processing]. Moscow, Kruglyy stol Publ., 2001, 528 p.

8. Kadyrzhanov K. K., Komarov F. F., Pogrebnyak A. D. Ionno-luchevaya i ionno-plazmennaya modifikatsiya materialov [Ion-beam and ion-plasma modification of materials]. Moscow, MGU Publ., 2005, 640 p.

9. Pout Dzh. M., Foti G., Dzhekobson D. K. Modifikatsiya i legirovaniye poverkhnosti lazernymi. ionnymi i elektronnymi puchkami [Modification and alloying of the surface with laser, ion and electron beams]. Moscow, Mashinostroyeniye Publ., 1987, 424 p.

10. Gromov V. E., Ivanov Yu. F. Struktura, fazovyy sostav i svoystva titana posle kompleksnykh uprochnyayushchikh tekhnologiy [Structure, phase composition and properties of titanium after complex hardening technologies]. Novokuznetsk, SibGIU Publ., 2015, 304 p.

11. Shulov V. A., Paykin A. G., Novikov A. S. Silnotochnyye elektronnyye impulsnyye puchki dlya aviatsionnogo dvigatelestroyeniya [Pulsed high-current electron beams for aircraft engines]. Moscow, Artek Publ., 2012.

12. Uglov V. V., Cherenda N. N., Anishchik V. M., Astashinskiy V. M., Kvasov N. T. Modifikatsiya materialov kompressionnymi plazmennymi potokami [Modification of structure and properties of eutectic silumin by electron-ion-plasma treatment]. Minsk, BGU Publ., 2013, 248 p.

13. Laskovnev A. P., Ivanov Yu. F., Petrikova E. A. Modifikatsiya struktury i svoystv evtekticheskogo silumina elektronno-ionno-plazmennoy obrabotkoy [Modification of structure and properties of eutectic silumin by electronion-plasma treatment]. Minsk, Belaruskaya Navuka Publ., 2013, 287 p.

14. GOST 11069-2001. Alyuminiy pervichnyy. Marki. Mezhgosudarstvennyy sovet po standartizatsii. metrologii i sertifikatsii [State Standard Primary aluminum. Brands. Interstate Council for standardization, Metrology and certification]. Minsk, 2001.

15. Lyakishev N. P. Diagrammy sostoyaniya dvoynykh metallicheskikh system [State diagrams of double metal systems]. Moscow, Mashinostroyeniye Pabl., 1996, Vol. 1, 992 р.

16. Lyakishev N. P. Diagrammy sostoyaniya dvoynykh metallicheskikh system [State diagrams of double metal systems]. Moscow, Mashinostroyeniye Pabl., 2001, Vol. 3, 872 р.

17. Lengauer W., Ettmayer P. The Crystal Structure of a New Phase in the Titanium-Nitrogen System. J. Less-Common Met. 1986. Vol. 120, P. 153–159.

18. Rogl P., Schuster J.C. Ti-B-N (Titanium – Boron – Nitrogen) in Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems. Materials Park, Ohio: Materials Informations Soc. 1992. P. 103–106.

19. Lengauer W. The Crystal Structure of η-Ti3N2−Х: An Additional New Phase in the Ti-N System. J. Less-Common Met. 1986, Vol. 125, P.127–134.

20. Durlu N., Gruber U., Pietzka M. A. Phases and Phase Equilibria in the Quaternary System Ti-Cu-Al-N at 850 °C. Z. Metallkd. 1997, Vol. 97, P. 390–400.

21. Procopio A. T., El-Raghy T., Barsoum M. W. Synthesis of Ti4AlN3 and Phase Equilibria in the Ti-Al-N System. Metall. Mater. Trans. 2000, Vol. 31A, P. 373–378.

22. Schuster J. C., Bauer J. The Ternary System Titanium-Aluminium-Nitrogen. J. Solid State Chem. 1984, Vol. 53, P. 260–265.

23. Schuster J. C., Bauer J., Nowotny H. Applications to Materials Science of Phase Diagrams and Crystal Structures in the Ternary Systems Transition Metal- Aluminium-Nitrogen. Rev. Chim. Miner. 1985, Vol. 22, P. 546–554.

24. Barsoum M. W., Ali M., El-Raghy T. Processing and Characterization of Ti2AlC, Ti2AlN and Ti2AlC0.5N0.5. Metall. Trans. 2000, Vol. A 31A, P. 1857–1865.

25. Barsoum M. W. Rawn C. J., El-Raghy T., Procopio A. T., Porter W. D., Wang H., Hubbard C. R. Thermal Properties of Ti4AlN3. J. Appl. Phys. 2000, Vol. 87, P. 8407–8414.

26. Petrov I., Mojab E., Adibi F., Greene J. E., Hultman L., Sundgren J.-E. Interfacial Reactions in Epitaxial Al/Ti1-xAlxN (0 ≤ x ≤ 0.2) Model Diffusion-Barrier Structure. J. Vac. Sci. Technol. 1993, Vol. A11, P. 11–17.

27. Tanaka Y., Guer T. M., Kelly M., Hagstrom S. B., Ikeda T. Strusture and Properties of (Ti1–xAlx)N Films Prepared by Reactive Sputtering. Thin Solid Films. 1993, Vol. 228, P. 238–241.

28. Ikeda T., Satoh H. Phase Formation and Characterization of Hard Coatings in the Ti-Al-N System Prepared by the Cathodic Arc Ion Platting Method. Thin Solid Films. 1991, Vol. 195, P. 99–110.

29. Wu Z. L., Pope D. P., Vitek V. Ti2NAl in L12 Al3Ti-Base Alloys. Metall. Mater. Trans. 1995, Vol. A26, P. 521–524.

30. Nowotny H., Jeitschko W., Benesovsky F. Novel Complex Carbides and Nitrides and Their Relation to Phases of Hard Substances. Planseeber. Pulvermetall. 1964, Vol. 12, P. 31–43.

31. Mabuchi H., Tsuda H., Nakayama Y. Processing of TiAl-Ti2AlN Composites and their Compressive Properties. J. Mater. Res. 1992, Vol. 7. P. 894–900.

32. Jeitschko W., Nowotny H., Benesovsky F. Ti2AlN and Nitrogen Containing H-Phase. Monatsh. Chem. 1963, Vol. 94, P. 1198–1200.

33. Ivchenko V. I., Lesnaya M. I., Nemchenko V. F., Kosolapova T. Ya. Study of Preparation Conditions and Certain Physical Properties of the Ternary Compound TI2AlN. Poroshk. Metall. 1976, No. 4, P. 60–63.

34. Ivchenko V. I., Kosolapova T. Ya. Investigation of Abrasive Properties of Ternary Compounda in the Systems Ti-Al-C and Ti-Al-N. Poroshk. Metall. 1976, No. 8, P. 56–59.

35. Farber L., Levin I., Barsoum M. W., El-Raghy T., Tzenov T. High-Resolution Transmission Electron Microscopy of Some Tin+1AXn Compounds (n = 1, 2; A = Al or Si; X = C or N). J. Appl. Phys. 1990, Vol. 86, P. 2540–2543.

36. Magnan J., Weatherly G. C., Cheynet M.-C. The Nitriding Behavior of Ti-Al Alloys at 1000 °C. Metall. Mater. Trans. A. 1999, Vol. 30A, P. 19–29.

37. Gamarnik M. Y., Barsoum M. W., El-Raghy T. Improved X-Ray Powder Diffraction Data for Ti2AlN. Powder Diffr. 2000, Vol. 15, P. 241–242.

38. Barsoum M. W. The MN+1AXN phases: a newclass of solids; thermodinamically stable nanolaminates. Prog. Solid St. Chem. 2000, Vol. 28, P. 201–281.

39. Barsoum M. W., El-Raghy T., Radovic M. Ti3SiC2: a layered machinable ductile carbide. Interceram. 2000, Vol. 49, P. 226–233.

40. Kooi B. J. R., Poppen J., Carvalho N. J. M. Ti3SiC2: a damage tolerant ceramic studied with nanoindentations and transmission electron microscopy. Acta Mater. 2003, Vol. 51, P. 2859–2872.

41. Palmquist J.-P. Carbide and MAX-phase engineering by thin film synthesis. Comprehensive Summaries of Uppsala. Dissertations from the Faculty of Science and Technology. 2004, No. 930, 70 p.

42. Sun Z. M. Progress in research and development on MAX phases: a family of layered ternary Compounds. International Materials Reviews. 2011, Vol. 56, Р. 143–167.

43. Khirsh P., Khovi A., Nikolson R. Elektronnaya mikroskopiya tonkikh kristallov [Electron microscopy of thin crystals]. Moscow, Mir Publ., 1968, 574 p.

44. Koneva N. A., Kozlov E. V. [The nature of substructure hardening]. Izvestiya VUZov. Fizika. 1982, No. 8, P. 3–14 (In Russ.).

45. Koneva N. A., Kozlov E. V., Trishkina L. I. [The long-range stress fields, curvature-torsion of the crystal lattice and the stage of plastic deformation. The Measurement methods and results]. Novyye metody v fizike i mekhanike deformiruyemogo tverdogo tela. Sbornik trudov mezhdunarodnoy konferentsii. Tomsk, TGU Publ., 1990, P. 83–93 (In Russ.).

46. Teplyakova L. A., Ignatenko L. N., Kasatkina N. F. [The Regularities of plastic deformation of steel with the structure of tempered martensite]. Plasticheskaya deformatsiya splavov. Strukturno-neodnorodnyye materialy. Tomsk, TGU Publ., 1987, P. 26–51 (In Russ.).

47. Ivanov Yu. F., Gromov V. E., Popova N. A. Strukturno-fazovyye sostoyaniya i mekhanizmy uprochneniya deformirovannoy stali [The structural-phase state and strengthening mechanisms of deformed steel]. Novokuznetsk, Poligrafist Publ., 2016, 510 p.


Ivanov Yurii Fedorovich – Dr. Sc., assistant professor, senior scientist, Institute of High Current Electronics of the SB RAS. E-mail: yufi55@mail.ru.

Eresko Sergei Pavlovich – Dr. Sc., professor, Corresponding member of Academy of Higher Education of the Russian Federation, honored inventor of the Russian Federation, Department of Fundamentals of machine design, Institute of Mechanical Engineering and Mechatronics, Reshetnev Siberian State University of Science and Technology. E-mail: ereskosp@mail.sibsau.ru, eresko07@mail.ru.

Ahmadeev Yurii Halatovych – Cand. Sc., senior researcher, Institute of High Current Electronics of the SB RAS. E-mail: ahmadeev@opee.hcei.tsc.ru.

Lopatin Ilya Viktorovich – Cand. Sc., scientist, Institute of High Current Electronics of the SB RAS. E-mail: lopatin@opeee.hcei.tsc.ru.

Klopotov Anatoly Anatolyevich – Dr. Sc., professor, Tomsk State University of Architecture and Building. E-mail: klopotovaa@tsuab.ru.


  DEVELOPMENT OF COMBINED ELECTRON-ION-PLASMA METHOD FOR FORMATION OF MULTIPHASE SUBMICRO-NANOSCALE ALLOYS BASED ON ALUMINUM. P. 88–98.